1
|
Engelmann C, Zhang IW, Clària J. Mechanisms of immunity in acutely decompensated cirrhosis and acute-on-chronic liver failure. Liver Int 2025; 45:e15644. [PMID: 37365995 PMCID: PMC11815630 DOI: 10.1111/liv.15644] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The identification of systemic inflammation (SI) as a central player in the orchestration of acute-on-chronic liver failure (ACLF) has opened new avenues for the understanding of the pathophysiological mechanisms underlying this disease condition. ACLF, which develops in patients with acute decompensation of cirrhosis, is characterized by single or multiple organ failure and high risk of short-term (28-day) mortality. Its poor outcome is closely associated with the severity of the systemic inflammatory response. In this review, we describe the key features of SI in patients with acutely decompensated cirrhosis and ACLF, including the presence of a high blood white cell count and increased levels of inflammatory mediators in systemic circulation. We also discuss the main triggers (i.e. pathogen- and damage-associated molecular patterns), the cell effectors (i.e. neutrophils, monocytes and lymphocytes), the humoral mediators (acute phase proteins, cytokines, chemokines, growth factors and bioactive lipid mediators) and the factors that influence the systemic inflammatory response that drive organ failure and mortality in ACLF. The role of immunological exhaustion and/or immunoparalysis in the context of exacerbated inflammatory responses that predispose ACLF patients to secondary infections and re-escalation of end-organ dysfunction and mortality are also reviewed. Finally, several new potential immunogenic therapeutic targets are debated.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow‐KlinikumCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Institute for Liver and Digestive HealthUniversity College LondonLondonUK
| | - Ingrid W. Zhang
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow‐KlinikumCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols ChairBarcelonaSpain
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols ChairBarcelonaSpain
- Biochemistry and Molecular Genetics ServiceHospital Clínic‐IDIBAPS CIBERehdBarcelonaSpain
- Department of Biomedical SciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
2
|
Asaad S, Chillon TS, Filipowicz D, Wilms B, Strenge F, Szczepanek-Parulska E, Minich WB, Meyhöfer SM, Marquardt JU, Mittag J, Oster H, Ruchala M, Schomburg L. Serum CD5L as potential biomarker of thyroid hormone status during pregnancy. Biofactors 2025; 51:e2123. [PMID: 39345206 DOI: 10.1002/biof.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
The thyroid hormone (TH) status is routinely assessed by thyrotropin (TSH) and thyroxine (T4). Both biomarkers are mainly regulated by TH receptor beta, whereas many peripheral organs employ the alpha receptor. Serum cluster of differentiation 5-like molecule (CD5L) is a liver-derived protein under control of both TH receptor isoforms. However, clinical data on its relation to TH status are sparse. An additional biomarker of TH status is needed in particular during pregnancy, where the routine biomarkers become dynamically disturbed. This study aimed to determine possible covariates regulating serum CD5L and to test its potential suitability as additional TH biomarker during pregnancy. A sandwich ELISA for serum CD5L was established using newly raised antibodies. Circadian effects and the impact of liver disease on serum CD5L concentrations were assessed. Serum samples from pregnant women with well-characterized TH and trace element status were analyzed, and CD5L concentrations were correlated with other indicators of TH status including TSH, fT4, fT3, copper, and selenium concentrations. The new quantitative assay for CD5L showed high accuracy. Serum CD5L was stable in dilution and refreezing experiments and did not show strong circadian variance or dependency on liver disease. In serum of pregnant women, CD5L correlated positively to fT3, but not to fT4 or TSH. Significant positive correlations of CD5L were observed with serum levels of the TH-responsive trace elements selenium and copper. The data support the potential suitability of serum CD5L as an additional marker of TH status, with potential value for pregnancy and thyroid disease.
Collapse
Affiliation(s)
- Sabrina Asaad
- The Institute for Experimental Endocrinology, Charité Medical School, Berlin, Germany
| | - Thilo Samson Chillon
- The Institute for Experimental Endocrinology, Charité Medical School, Berlin, Germany
| | - Dorota Filipowicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Britta Wilms
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck/Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Frank Strenge
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck/Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
- Department of Medicine I, University of Lübeck, Lübeck, Germany
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Waldemar B Minich
- The Institute for Experimental Endocrinology, Charité Medical School, Berlin, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck/Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Jens Mittag
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck/Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Henrik Oster
- Lübeck Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Lutz Schomburg
- The Institute for Experimental Endocrinology, Charité Medical School, Berlin, Germany
| |
Collapse
|
3
|
Luo XY, Ying SQ, Cao Y, Jin Y, Jin F, Zheng CX, Sui BD. Liver-based inter-organ communication: A disease perspective. Life Sci 2024; 351:122824. [PMID: 38862061 DOI: 10.1016/j.lfs.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Inter-organ communication through hormones, cytokines and extracellular vesicles (EVs) has emerged to contribute to the physiological states and pathological processes of the human body. Notably, the liver coordinates multiple tissues and organs to maintain homeostasis and maximize energy utilization, with the underlying mechanisms being unraveled in recent studies. Particularly, liver-derived EVs have been found to play a key role in regulating health and disease. As an endocrine organ, the liver has also been found to perform functions via the secretion of hepatokines. Investigating the multi-organ communication centered on the liver, especially in the manner of EVs and hepatokines, is of great importance to the diagnosis and treatment of liver-related diseases. This review summarizes the crosstalk between the liver and distant organs, including the brain, the bone, the adipose tissue and the intestine in noticeable situations. The discussion of these contents will add to a new dimension of organismal homeostasis and shed light on novel theranostics of pathologies.
Collapse
Affiliation(s)
- Xin-Yan Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Si-Qi Ying
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Artru F, McPhail MJ. Immunopathogenesis of acute on chronic liver failure. Am J Transplant 2024; 24:724-732. [PMID: 38346497 DOI: 10.1016/j.ajt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Acute-on-chronic liver failure is a well-established description of a high-mortality syndrome of chronic liver disease (usually cirrhosis) with organ failure. While the exact definition is under refinement, the accepted understanding of this entity is in patients with chronic liver disease and various organs in failure and where systemic inflammation is a major component of the pathobiology. There are limited therapies for a disease with such a poor prognosis, and while improvements in the critical care management and for very few patients, liver transplantation, mean 50% can survive to hospital discharge, rapid application of new therapies is required. Here we explain the current understanding of the immunologic abnormalities seen in acute-on-chronic liver failure across the innate and adaptive immune systems, the role of the hepatic cell death and the gut-liver axis, and recommendations for future research and treatment paradigms.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom; Liver department and NUMECAN institute, Rennes University Hospital and Rennes University, France
| | - Mark J McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
5
|
Cao Y, Hu B, Fan Y, Wang W, Chi M, Nasser MI, Ma K, Liu C. The effects of apoptosis inhibitor of macrophage in kidney diseases. Eur J Med Res 2024; 29:21. [PMID: 38178221 PMCID: PMC10765713 DOI: 10.1186/s40001-023-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Kidney disease is a progressive and irreversible condition in which immunity is a contributing factor that endangers human health. It is widely acknowledged that macrophages play a significant role in developing and causing numerous kidney diseases. The increasing focus on the mechanism by which macrophages express apoptosis inhibitor of macrophages (AIM) in renal diseases has been observed. AIM is an apoptosis inhibitor that stops different things that cause apoptosis from working. This keeps AIM-bound cell types alive. Notably, the maintenance of immune cell viability regulates immunity. As our investigation progressed, we concluded that AIM has two sides when it comes to renal diseases. AIM can modulate renal phagocytosis, expedite the elimination of renal tubular cell fragments, and mitigate tissue injury. AIM can additionally exacerbate the development of renal fibrosis and kidney disease by prolonging inflammation. IgA nephropathy (IgAN) may also worsen faster if more protein is in the urine. This is because IgA and immunoglobulin M are found together and expressed. In the review, we provide a comprehensive overview of prior research and concentrate on the impacts of AIM on diverse subcategories of nephropathies. We discovered that AIM is closely associated with renal diseases by playing a positive or negative role in the onset, progression, or cure of kidney disease. AIM is thus a potentially effective therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yixia Cao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Boyan Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yunhe Fan
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
- Renal Department and Nephrology Institute, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China.
| |
Collapse
|
6
|
Cheng W, Xu C, Su Y, Shen Y, Yang Q, Zhao Y, Zhao Y, Liu Y. Engineered Extracellular Vesicles: A potential treatment for regeneration. iScience 2023; 26:108282. [PMID: 38026170 PMCID: PMC10651684 DOI: 10.1016/j.isci.2023.108282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Extracellular vesicles (EVs) play a critical role in various physiological and pathological processes. EVs have gained recognition in regenerative medicine due to their biocompatibility and low immunogenicity. However, the practical application of EVs faces challenges such as limited targeting ability, low yield, and inadequate therapeutic effects. To overcome these limitations, engineered EVs have emerged. This review aims to comprehensively analyze the engineering methods utilized for modifying donor cells and EVs, with a focus on comparing the therapeutic potential between engineered and natural EVs. Additionally, it aims to investigate the specific cell effects that play a crucial role in promoting repair and regeneration, while also exploring the underlying mechanisms involved in the field of regenerative medicine.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Chenyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yuran Su
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Youqing Shen
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Yang
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yanhong Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Liu
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| |
Collapse
|
7
|
Leszczynska A, Stoess C, Sung H, Povero D, Eguchi A, Feldstein A. Extracellular Vesicles as Therapeutic and Diagnostic Tools for Chronic Liver Diseases. Biomedicines 2023; 11:2808. [PMID: 37893181 PMCID: PMC10604241 DOI: 10.3390/biomedicines11102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic liver diseases can lead to fibrotic changes that may progress to the development of cirrhosis, which poses a significant risk for morbidity and increased mortality rates. Metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and viral hepatitis are prevalent liver diseases that may lead to cirrhosis. The advanced stages of cirrhosis can be further complicated by cancer development or end-stage liver disease and liver failure. Hence, early detection and diagnosis of liver fibrosis is crucial for preventing the progression to cirrhosis and improving patient outcomes. Traditionally, invasive liver biopsy has been considered the gold standard for diagnosing and staging liver fibrosis. In the last decade, research has focused on non-invasive methods, known as liquid biopsies, which involve the identification of disease-specific biomarkers in human fluids, such as blood. Among these alternative approaches, extracellular vesicles (EVs) have emerged as promising diagnostic and therapeutic tools for various diseases, including chronic liver diseases. EVs are released from stressed or damaged cells and can be isolated and quantified. Moreover, EVs facilitate cell-to-cell communication by transporting various cargo, and they have shown the potential to reduce the expression of profibrogenic markers, making them appealing tools for novel anti-fibrotic treatments. This review focuses on the impact of EVs in chronic liver diseases and exploring their potential applications in innovative therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
| | - Christian Stoess
- Department of Pediatrics, University of California, San Diego, CA 92037, USA; (A.L.)
- Department of Surgery, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Hana Sung
- Department of Pediatrics, University of California, San Diego, CA 92037, USA; (A.L.)
| | - Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Akiko Eguchi
- Biobank Center, Mie University Hospital, Tsu 514-8507, Japan;
| | - Ariel Feldstein
- Department of Pediatrics, University of California, San Diego, CA 92037, USA; (A.L.)
| |
Collapse
|
8
|
Clària J, Arroyo V, Moreau R. Roles of systemic inflammatory and metabolic responses in the pathophysiology of acute-on-chronic liver failure. JHEP Rep 2023; 5:100807. [PMID: 37600957 PMCID: PMC10432809 DOI: 10.1016/j.jhepr.2023.100807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 08/22/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is the most severe form of acutely decompensated cirrhosis and is characterised by the presence of one or more organ failures, intense systemic inflammation, peripheral blood lymphopenia, and a high risk of death without liver transplantation within 28 days. Herein, we propose the hypothesis that intense systemic inflammation may lead to organ failures through five different non-mutually exclusive mechanisms. First, pathogen-associated molecular patterns and inflammatory mediators (i.e. cytokines and lipid mediators) stimulate the production of the vasorelaxant nitric oxide in the walls of splanchnic arterioles, leading to enhanced splanchnic and systemic vasodilation which, in turn, induces enhanced activity of endogenous vasoconstrictor systems causing renal vasoconstriction and acute kidney injury. Second, neutrophils that reach the systemic circulation are prone to adhere to the vascular endothelium. Cytokines and lipid mediators act on the endothelium in microvessels of vital organs, an effect that favours the migration of neutrophils (and probably other leukocytes) to surrounding tissues where neutrophils can cause tissue damage and thereby contribute to organ failure. Third, cytokines and lipid mediators promote the formation of microthrombi that impair microcirculation and tissue oxygenation. Fourth, acute inflammation stimulates intense peripheral catabolism of amino acids whose products may be metabotoxins that contribute to hepatic encephalopathy. Fifth, acute inflammatory responses, which include the production of a broad variety of biomolecules (proteins and lipids), and an increase in biomass (i.e., granulopoiesis requiring de novo nucleotide synthesis), among others, are energetically expensive processes that require large amounts of nutrients. Therefore, immunity competes with other maintenance programmes for energy. The brain stem integrates the energy demand of each organ system, with immunity considered a top priority. The brain stem may "decide" to make a trade-off which involves the induction of a dormancy programme that permits the shutdown of mitochondrial respiration and oxidative phosphorylation in peripheral organs. In the context of acutely decompensated cirrhosis, the consequence of a shutdown of mitochondrial respiration and ATP production would be a dramatic decrease in organ function.
Collapse
Affiliation(s)
- Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Grifols Chair, Barcelona, Spain
- Hospital Clínic-IDIBAPS, CIBERehd, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Grifols Chair, Barcelona, Spain
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Grifols Chair, Barcelona, Spain
- INSERM, Université de Paris, Centre de Recherche sur l’Inflammation (CRI), Paris, France
- Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Beaujon, Service d’Hépatologie, Clichy, France
| |
Collapse
|
9
|
Chen C, Zhu A, Ye S, Li W, Fei L, Huang Q, Chen L. A new dyslipidemia-based scoring model to predict transplant-free survival in patients with hepatitis E-triggered acute-on-chronic liver failure. Lipids Health Dis 2023; 22:80. [PMID: 37355667 DOI: 10.1186/s12944-023-01826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/28/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND/AIMS Hepatitis E virus (HEV)-triggered acute-on-chronic liver failure (ACLF) has unacceptably high short-term mortality. However, it is unclear whether the existing predictive scoring models are applicable to evaluate the prognosis of HEV-triggered ACLF. METHODS We screened datasets of patients with HEV-triggered ACLF from a regional tertiary hospital for infectious diseases in Shanghai, China, between January 2011 and January 2021. Clinical and laboratory parameters were recorded and compared to determine a variety of short-term mortality risk factors, which were used to develop and validate a new prognostic scoring model. RESULTS Out of 4952 HEV-infected patients, 817 patients with underlying chronic liver disease were enrolled in this study. Among these, 371 patients with HEV-triggered ACLF were identified and allocated to the training set (n = 254) and test set (n = 117). The analysis revealed that hepatic encephalopathy (HE), ascites, triacylglycerol and apolipoprotein A (apoA) were associated with 90-day mortality (P < 0.05). Based on these significant indicators, we designed and calculated a new prognostic score = 0.632 × (ascites: no, 1 point; mild to moderate, 2 points; severe, 3 points) + 0.865 × (HE: no, 1 point; grade 1-2, 2 points; grade 3-4, 3 points) - 0.413 × triacylglycerol (mmol/L) - 2.171 × apoA (g/L). Compared to four well-known prognostic models (MELD score, CTP score, CLIF-C OFs and CLIF-C ACLFs), the new scoring model is more accurate, with the highest auROCs of 0.878 and 0.896, respectively, to predict 28- and 90-day transplantation-free survival from HEV-triggered ACLF. When our model was compared to COSSH ACLF IIs, there was no significant difference. The test data also demonstrated good concordance. CONCLUSIONS This study is one of the first to address the correlation between hepatitis E and serum lipids and provides a new simple and efficient prognostic scoring model for HEV-triggered ACLF.
Collapse
Affiliation(s)
- Chong Chen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, China
| | - Aihong Zhu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, China
| | - Shanke Ye
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, China
| | - Weixia Li
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, China
| | - Ling Fei
- Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, China
| | - Qin Huang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, China.
| | - Liang Chen
- Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, China.
| |
Collapse
|
10
|
Yang H, Luo Y, Lai X. The comprehensive role of apoptosis inhibitor of macrophage (AIM) in pathological conditions. Clin Exp Immunol 2023; 212:184-198. [PMID: 36427004 PMCID: PMC10243866 DOI: 10.1093/cei/uxac095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 08/19/2023] Open
Abstract
CD5L/AIM (apoptosis inhibitor of macrophage), as an important component in maintaining tissue homeostasis and inflammation, is mainly produced and secreted by macrophages but partially dissociated and released from blood AIM-IgM. AIM plays a regulatory role in intracellular physiological mechanisms, including lipid metabolism and apoptosis. AIM not only increases in autoimmune diseases, directly targets liver cells in liver cancer and promotes cell clearance in acute kidney injury, but also causes arteriosclerosis and cardiovascular events, and aggravates inflammatory reactions in lung diseases and sepsis. Obviously, AIM plays a pleiotropic role in the body. However, to date, studies have failed to decipher the mechanisms behind its different roles (beneficial or harmful) in inflammatory regulation. The inflammatory response is a "double-edged sword," and maintaining balance is critical for effective host defense while minimizing the adverse side effects of acute inflammation. Enhancing the understanding of AIM function could provide the theoretical basis for new therapies in these pathological settings. In this review, we discuss recent studies on the roles of AIM in lipid metabolism, autoimmune diseases and organic tissues, such as liver cancer, myocardial infarction, and kidney disease.
Collapse
Affiliation(s)
- Huiqing Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Luo
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
12
|
Gao Z, Wu X, Yang L, Liu C, Wang X, Wang H, Dong K. Role of CD5 molecular-like on hepatocellular carcinoma. Chin Med J (Engl) 2023; 136:556-564. [PMID: 36939243 PMCID: PMC10106147 DOI: 10.1097/cm9.0000000000002576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND CD5L (CD5 molecular-like) plays an important role in lipid metabolism and immune regulation. This study aimed to investigate the roles of CD5L on liver hepatocellular carcinoma (LIHC). METHODS We analyzed the CD5L mRNA expression and its potential prognostic value based on The Cancer Genome Atlas and Gene Expression Omnibus databases. Immunohistochemical analysis was used to investigate the CD5L levels in LIHC tissues. Serum CD5L levels in LIHC were detected by enzyme-linked immunosorbent assay. Cell Counting Kit-8 (CCK-8) assay was used to investigate the effect of CD5L treatment on HepG2 and QSG-7701 cell proliferation. CD5L expression correlated genes were exhumed based on the LinkedOmics. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses for CD5L associated genes were performed. The correlation between CD5L and tumor immune infiltration was analyzed by using Tumor Immune Estimation Resource (TIMER) 2.0. RESULTS CD5L mRNA and protein levels were significantly decreased in LIHC tumor tissue compared with non-tumor control tissues. Moreover, serum CD5L levels were significantly lower in LIHC patients than that in healthy subjects. Gene Expression Profiling Interactive Analysis 2 and Kaplan-Meier plotter analysis showed that a high-CD5L expression was correlated with favorable overall survival in LIHC patients, except the LIHC patients with hepatitis virus. CCK-8 results showed that CD5L treatment significantly decreased HepG2 cell proliferation in a concentration-dependent manner, and CD5L treatment had no effect on the proliferation of non-tumor hepatocyte line QSG-7701. CD5L associated genes were enriched in the immune response biological process, and CD5L expression levels were positively correlated with the immune infiltrates of CD8 + T cell and M1 macrophage cells but negatively correlated with CD4 + T cells and M0 macrophage cell infiltration. CONCLUSIONS Exogenous CD5L inhibits cell proliferation of hepatocellular carcinoma. CD5L may act as a role of prognostic marker.
Collapse
Affiliation(s)
- Zhaowei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Xianan Wu
- Department of Medical Laboratory, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi 710038, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Chong Liu
- Department of Medical Laboratory, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi 710038, China
| | - Xi Wang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Huiping Wang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| |
Collapse
|
13
|
Extracellular Vesicles as Drivers of Immunoinflammation in Atherothrombosis. Cells 2022; 11:cells11111845. [PMID: 35681540 PMCID: PMC9180657 DOI: 10.3390/cells11111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality all over the world. Extracellular vesicles (EVs), small lipid-bilayer membrane vesicles released by most cellular types, exert pivotal and multifaceted roles in physiology and disease. Emerging evidence emphasizes the importance of EVs in intercellular communication processes with key effects on cell survival, endothelial homeostasis, inflammation, neoangiogenesis, and thrombosis. This review focuses on EVs as effective signaling molecules able to both derail vascular homeostasis and induce vascular dysfunction, inflammation, plaque progression, and thrombus formation as well as drive anti-inflammation, vascular repair, and atheroprotection. We provide a comprehensive and updated summary of the role of EVs in the development or regression of atherosclerotic lesions, highlighting the link between thrombosis and inflammation. Importantly, we also critically describe their potential clinical use as disease biomarkers or therapeutic agents in atherothrombosis.
Collapse
|