1
|
Hoffman GR, Olson MG, Schoffstall AM, Estévez RF, Van den Eynde V, Gillman PK, Stabio ME. Classics in Chemical Neuroscience: Selegiline, Isocarboxazid, Phenelzine, and Tranylcypromine. ACS Chem Neurosci 2023; 14:4064-4075. [PMID: 37966854 DOI: 10.1021/acschemneuro.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
The discovery of monoamine oxidase inhibitors (MAOIs) in the 1950s marked a significant breakthrough in medicine, creating a powerful new category of drug: the antidepressant. In the years and decades that followed, MAOIs have been used in the treatment of several pathologies including Parkinson's disease, Alzheimer's disease, and various cancers and as anti-inflammatory agents. Despite once enjoying widespread use, MAOIs have dwindled in popularity due to side effects, food-drug interactions, and the introduction of other antidepressant drug classes such as tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs). The recently published prescriber's guide for the use of MAOIs in treating depression has kindled a resurgence of their use in the clinical space. It is therefore timely to review key aspects of the four "classic" MAOIs: high-dose selegiline, isocarboxazid, phenelzine, and tranylcypromine. This review discusses their chemical synthesis, metabolism, pharmacology, adverse effects, and the history and importance of these drugs within the broader field of chemical neuroscience.
Collapse
Affiliation(s)
- Gavin R Hoffman
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Madeline G Olson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
| | - Allen M Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Ryan F Estévez
- Department of Psychiatry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
- Tampa Bay Neurobehavior Institute, 6311 Sheldon Road, Tampa Bay, Florida 33615, United States
| | - Vincent Van den Eynde
- PsychoTropical Research, Bucasia, Queensland 4740, Australia
- Department of Psychiatry, RadboudUMC, 6500 Nijmegen, The Netherlands
| | - Peter K Gillman
- PsychoTropical Research, Bucasia, Queensland 4740, Australia
| | - Maureen E Stabio
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
| |
Collapse
|
2
|
Monoamine Neurotransmitters Control Basic Emotions and Affect Major Depressive Disorders. Pharmaceuticals (Basel) 2022; 15:ph15101203. [PMID: 36297314 PMCID: PMC9611768 DOI: 10.3390/ph15101203] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Major depressive disorder (MDD) is a common and complex mental disorder, that adversely impacts an individual’s quality of life, but its diagnosis and treatment are not accurately executed and a symptom-based approach is utilized in most cases, due to the lack of precise knowledge regarding the pathophysiology. So far, the first-line treatments are still based on monoamine neurotransmitters. Even though there is a lot of progress in this field, the mechanisms seem to get more and more confusing, and the treatment is also getting more and more controversial. In this study, we try to review the broad advances of monoamine neurotransmitters in the field of MDD, and update its effects in many advanced neuroscience studies. We still propose the monoamine hypothesis but paid special attention to their effects on the new pathways for MDD, such as inflammation, oxidative stress, neurotrophins, and neurogenesis, especially in the glial cells, which have recently been found to play an important role in many neurodegenerative disorders, including MDD. In addition, we will extend the monoamine hypothesis to basic emotions; as suggested in our previous reports, the three monoamine neurotransmitters play different roles in emotions: dopamine—joy, norepinephrine—fear (anger), serotonins—disgust (sadness). Above all, this paper tries to give a full picture of the relationship between the MDD and the monoamine neurotransmitters such as DA, NE, and 5-HT, as well as their contributions to the Three Primary Color Model of Basic Emotions (joy, fear, and disgust). This is done by explaining the contribution of the monoamine from many sides for MDD, such the digestive tract, astrocytes, microglial, and others, and very briefly addressing the potential of monoamine neurotransmitters as a therapeutic approach for MDD patients and also the reasons for its limited clinical efficacy, side effects, and delayed onset of action. We hope this review might offer new pharmacological management of MDD.
Collapse
|
3
|
Brown J, Li Z, Wang X, Kim YJ, Wang YC, Zuo Y, Hong W, Wang P, Li B, Yang L. Nanoformulation improves antitumor efficacy of MAOI immune checkpoint blockade therapy without causing aggression-related side effects. Front Pharmacol 2022; 13:970324. [PMID: 36120311 PMCID: PMC9475110 DOI: 10.3389/fphar.2022.970324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
MAOIs, a well-established class of antidepressant that operate through the inhibition of monoamine oxidase to increase available serotonin, have recently been identified as a surprisingly effective candidate for the circumvention of tumor-induced immune suppression due to their abilities to enhance antitumor T cell activity through autocrine serotonin signaling and depolarize alternatively activated tumor-associated macrophages through a reduction in reactive oxygen species production. However, this impressive class of antidepressants-turned-cancer-drugs can induce aggressive behavioral side effects when administered in immunotherapeutic doses. In this study, we investigated the possibility of avoiding these neurological side effects while simultaneously improving antitumor activity by establishing crosslinked multilamellar liposomal vesicles (cMLVs) containing the MAOI phenelzine (PLZ). Our results showed that cMLV-PLZ treatment increases antitumor efficacy in a B16-OVA mouse melanoma model compared to treatment with free phenelzine. We also found that nanoformulation resulted in the complete elimination of MAOI-related aggression. These findings suggest a promising direction for the future of MAOIs repurposed for cancer immunotherapies.
Collapse
Affiliation(s)
- James Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Xi Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Yu-Chen Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Yanning Zuo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Weizhe Hong
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Pin Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Bo Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| |
Collapse
|
4
|
Targeting Immunosuppressive Tumor-Associated Macrophages Using Innate T Cells for Enhanced Antitumor Reactivity. Cancers (Basel) 2022; 14:cancers14112749. [PMID: 35681730 PMCID: PMC9179365 DOI: 10.3390/cancers14112749] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 01/03/2023] Open
Abstract
The field of T cell-based and chimeric antigen receptor (CAR)-engineered T (CAR-T) cell-based antitumor immunotherapy has seen substantial developments in the past decade; however, considerable issues, such as graft-versus-host disease (GvHD) and tumor-associated immunosuppression, have proven to be substantial roadblocks to widespread adoption and implementation. Recent developments in innate immune cell-based CAR therapy have opened several doors for the expansion of this therapy, especially as it relates to allogeneic cell sources and solid tumor infiltration. This study establishes in vitro killing assays to examine the TAM-targeting efficacy of MAIT, iNKT, and γδT cells. This study also assesses the antitumor ability of CAR-engineered innate T cells, evaluating their potential adoption for clinical therapies. The in vitro trials presented in this study demonstrate the considerable TAM-killing abilities of all three innate T cell types, and confirm the enhanced antitumor abilities of CAR-engineered innate T cells. The tumor- and TAM-targeting capacity of these innate T cells suggest their potential for antitumor therapy that supplements cytotoxicity with remediation of tumor microenvironment (TME)-immunosuppression.
Collapse
|