1
|
Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Schwerdtle T, Vejdovszky K, Viviani B, Benford D, Hart A, Rose M, Schroeder H, Vleminckx C, Vrijheid M, Gkimprixi E, Kouloura E, Riolo F, Bordajandi LR, Hogstrand C. Update of the risk assessment of brominated phenols and their derivatives in food. EFSA J 2024; 22:e9034. [PMID: 39444985 PMCID: PMC11496907 DOI: 10.2903/j.efsa.2024.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The European Commission asked EFSA to update its 2012 risk assessment on brominated phenols and their derivatives in food, focusing on five bromophenols and one derivative: 2,4,6-tribromophenol (2,4,6-TBP), 2,4-dibromophenol (2,4-DBP), 4-bromophenol (4-BP), 2,6-dibromophenol (2,6-DBP), tetrabrominated bisphenol S (TBBPS), tetrabromobisphenol S bismethyl ether (TBBPS-BME). Based on the overall evidence, the CONTAM Panel considered in vivo genotoxicity of 2,4,6-TBP to be unlikely. Effects in liver and kidney were considered as the critical effects of 2,4,6-tribromophenol (2,4,6-TBP) in studies in rats. A BMDL10 of 353 mg/kg body weight (bw) per day for kidney papillary necrosis in male rats was identified and was selected as the reference point for the risk characterisation. The derivation of a health-based guidance value was not considered appropriate due to major limitations in the toxicological database. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Around 78,200 analytical results for 2,4,6-TBP in food were used to estimate dietary exposure for the European population. Considering the resulting MOE values, all far above an MOE of 6000 that does not raise a health concern, and accounting for the uncertainties affecting the exposure and hazard assessments, the CONTAM Panel concluded with at least 95% probability that the current dietary exposure to 2,4,6-TBP does not raise a health concern. Due to lack of occurrence data, no risk assessment could be performed for breastfed or formula-fed infants. No risk characterisation could be performed for any of the other brominated phenols and derivatives included in the assessment, due to lack of data both on the toxicity and occurrence.
Collapse
|
2
|
Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution's Effects on Human Immunity. Int J Mol Sci 2024; 25:7788. [PMID: 39063030 PMCID: PMC11277414 DOI: 10.3390/ijms25147788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pollution poses a significant threat to human health, with detrimental effects on various physiological systems, including the respiratory, cardiovascular, mental, and perinatal domains. While the impact of pollution on these systems has been extensively studied, the intricate relationship between chemical pollution and immunity remains a critical area of investigation. The focus of this study is to elucidate the relationship between chemical pollution and human immunity. To accomplish this task, this study presents a comprehensive review that encompasses in vitro, ex vivo, and in vivo studies, shedding light on the ways in which chemical pollution can modulate human immunity. Our aim is to unveil the complex mechanisms by which environmental contaminants compromise the delicate balance of the body's defense systems going beyond the well-established associations with defense systems and delving into the less-explored link between chemical exposure and various immune disorders, adding urgency to our understanding of the underlying mechanisms and their implications for public health.
Collapse
Affiliation(s)
- Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Maria Lia Contrino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Massimo Contarino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| |
Collapse
|
3
|
Xu X, Zhang Y, Huang H, Chen J, Shi T. Distribution, transformation, and toxic effects of the flame retardant tetrabromobisphenol S and its derivatives in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174799. [PMID: 39019271 DOI: 10.1016/j.scitotenv.2024.174799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
As widely used alternative brominated flame retardants, tetrabromobisphenol S (TBBPS) and its derivatives have attracted increasing amounts of attention in the field of environmental science. Previous studies have shown that TBBPS and its derivatives easily accumulate in environmental media and may cause risks to environmental safety and human health. Therefore, to explore the environmental behaviours of TBBPS and its derivatives, in this paper, we summarized relevant research on the distribution of these compounds in water, the atmosphere, soil and food/biota, as well as their transformation mechanisms (biological and nonbiological) and toxic effects. The summary results show that TBBPS and its derivatives have been detected in water, the atmosphere, soil, and food/biota globally, making them a ubiquitous pollutant. These compounds may be subject to adsorption, photolysis or biological degradation after being released into the environment, which in turn increases their ecological risk. TBBPS and its derivatives can cause a series of toxic effects, such as neurotoxicity, hepatotoxicity, cytotoxicity, thyrotoxicity, genotoxicity and phytotoxicity, to cells or living organisms in in vitro and in vivo exposure. Toxicological studies suggest that TBBPS as an alternative to TBBPA is not entirely environmentally friendly. Finally, we propose future directions for research on TBBPS and its derivatives, including the application of new technologies in studies on the migration, transformation, toxicology and human exposure risk assessment of TBBPS and its derivatives in the environment. This review provides useful information for obtaining a better understanding of the behaviour and potential toxic effects of TBBPS and its derivatives in the environment.
Collapse
Affiliation(s)
- Xuehui Xu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China; Key Laboratory of Grassland Resources, Ministry of Education P.R. of China, Hohhot 010018, China.
| | - Yuexin Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jiafeng Chen
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Tailong Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
5
|
Yuan J, Li Y, Chen X, Yi Q, Wang Z. One electron oxidation-induced degradation of brominated flame retardants in electroactive membrane filtration system: Vital role of dichlorine radical-mediated process. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134318. [PMID: 38643582 DOI: 10.1016/j.jhazmat.2024.134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Reactive chlorine species (RCS) are inevitably generated in electrochemical oxidation process for treating high-salinity industrial wastewater, thereby resulting in the competition with coexisting hydroxyl radicals (•OH) for oxidizing recalcitrant organic compounds. Due to the low redox potentials compared to •OH, the role of RCS has been often overlooked. In this work, we developed an electroactive membrane filtration (EMF) system that had a high removal efficiency (99.1 ± 0.5 %) for tetrabromobisphenol S (TBBPS) at low energy consumption (1.45 kWh m-3). Electron spin resonance spectroscopy and molecular probing tests indicated the predominance of Cl2•-, of which steady-state concentration (2.2 ×10-10 M) was extremely higher than those of ClO• (6.7 ×10-13 M), •OH (0.95 ×10-13 M), and Cl• (2.39 ×10-15 M). The density functional theory (DFT) and intermediate product analysis highlighted that Cl2•- radicals had a higher electrophilic attack efficacy than •OH radicals for inducing changes in the electron density of the carbon atoms around phenolic hydroxyl groups, thus leading to the generation of transition state intermediates and accelerating the degradation of TBBPS. Our work demonstrates the vital role of Cl2•- radicals for pollutant degradation, highlighting the potential of this technology for cost-effective removal of recalcitrant organic compounds from water and wastewater.
Collapse
Affiliation(s)
- Jia Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuying Yi
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
6
|
Li J, Dai L, Feng Y, Cao Z, Ding Y, Xu H, Xu A, Du H. Multigenerational effects and mutagenicity of three flame retardants on germ cells in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115815. [PMID: 38091675 DOI: 10.1016/j.ecoenv.2023.115815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Flame retardants (FRs) have raised public concerns because of their environmental persistence and negative impacts on human health. Recent evidence has revealed that many FRs exhibit reproductive toxicities and transgenerational impacts, whereas the toxic effects of FRs on germ cells remain barely explored. Here we investigated the multigenerational effects of three flame retardants (TBBPA, TCEP and TCPP) on germ cell development in Caenorhabditis elegans, and examined the germ cell mutagenicity of these FRs by using whole genome sequencing. Parental exposure to three FRs markedly increased germ cell apoptosis, and impeded oogenesis in F1-F6 offspring. In addition, the double-increased mutation frequencies observed in progeny genomes uncover the mutagenic actions of FRs on germ cells. Analysis of mutation spectra revealed that these FRs predominantly induced point mutations at A:T base pairs, whereas both small and large indels were almost unaffected. These results revealed the long-term effects of FRs on development and genomic stability of germ cells, which may pose risks to environmental organisms and human reproductive health. Taken together, our findings suggest that germ cell mutagenicity should be carefully examined for the environmental risk assessment of FRs and other emerging pollutants.
Collapse
Affiliation(s)
- Jiali Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China
| | - Linglong Dai
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Yu Feng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Zhenxiao Cao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuting Ding
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| |
Collapse
|
7
|
Han Y, Yang H, Liu Z, Hu C, Lamine I, Liu Z, Gao P, Sui Y, Zheng P, Zhang H, Jia X. Tetrabromobisphenol a and its alternative tetrachlorobisphenol a induce oxidative stress, lipometabolism disturbance, and autophagy in the liver of male Pelophylax nigromaculatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166421. [PMID: 37619733 DOI: 10.1016/j.scitotenv.2023.166421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) have been widely used as flame retardants. However, their potential health risks to organisms have raised concerns, particularly for liver toxicity. Present study aimed to explore the toxic effects of TCBPA and TBBPA on black-spotted frogs (Pelophylax nigromaculatus) liver oxidative stress, autophagy, and lipid accumulation. After exposure to 0.001, 0.01, 0.1, and 1 mg/L TBBPA and TCBPA for 14 days, the content of cholesterol and triglyceride were significantly elevated. In addition, the malondialdehyde level rose greatly in dose dependent. However, the glutathione level declined in high TBBPA groups (0.01 and 0.1 mg/L). Furthermore, expressions of Beclin1, Atg5, and Atg7 were significantly increased, while p62 was markedly declined, respectively. Results obstained suggested that TBBPA and TCBPA exposure induced liver toxicity in black-spotted frog. This study provided insights into the toxicity mechanism of bisphenol flame retardants in amphibians and will aid in the ecological risk assessment of flame retardants.
Collapse
Affiliation(s)
- Yu Han
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Hongmei Yang
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhiqun Liu
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Chao Hu
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Imane Lamine
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Panpan Gao
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanming Sui
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224002, China
| | - Pei Zheng
- Dianshan branch of Ecological Environment Bureau, Zhoushan, 316299, China
| | | | - Xiuying Jia
- Hangzhou Normal University, Hangzhou, 311121, China; Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
8
|
Qin M, Huang L, Li M, Shao T, Zhang J, Jiang X, Shao C, Zhao C, Pan Y, Zhou Q, Wang Y, Liu XM, Qiu J. Immunotoxicity Evaluation of Trihalophenolic Disinfection By-Products in Mouse and Human Mononuclear Macrophage Systems: The Role of RNA Epitranscriptomic Modification in Mammalian Immunity. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127023. [PMID: 38157273 PMCID: PMC10756339 DOI: 10.1289/ehp11329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/15/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND 2,4,6-Trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP) are three widely detected trihalophenolic disinfection by-products (DBPs). Previous studies have mainly focused on the carcinogenic risk and developmental toxicity of 2,4,6-trihalophenols. Very little is known about their immunotoxicity in mammals. OBJECTIVES We investigated the effects of 2,4,6-trihalophenols on mammalian immunity using a mouse macrophage model infected with bacteria or intracellular parasites and aimed to elucidate the underlying mechanisms from an epitranscriptomic perspective. The identified mechanisms were further validated in human peripheral blood mononuclear cells (PBMCs). METHODS The mouse macrophage cell line RAW264.7 and primary mouse peritoneal macrophages were exposed to different concentrations of TCP, TBP, and TIP. The pro-inflammatory marker Ly6C, the survival of the bacterium Escherichia coli (E. coli), and the parasite burden of Toxoplasma gondii (T. gondii) were assessed. Furthermore, the global gene expression profiling of macrophages following exposure to 2,4,6-trihalophenols was obtained through RNA-sequencing (RNA-seq). The effects of 2,4,6-trihalophenols on RNA N 6 -methyladenosine (m 6 A ) methyltransferases and total RNA m 6 A levels were evaluated using Western blotting and dot blot, respectively. Transcriptome-wide m 6 A methylome was analyzed by m 6 A -seq . In addition, expression of m 6 A regulators and total RNA m 6 A levels in human PBMCs exposed to 2,4,6-trihalophenols were detected using quantitative reverse transcriptase polymerase chain reaction and dot blot, respectively. RESULTS Mouse macrophages exposed to TCP, TBP, or TIP had lower expression of the pro-inflammatory marker Ly6C, with a greater difference from control observed for TIP-exposed cells. Consistently, macrophages exposed to such DBPs, especially TIP, were susceptible to infection with the bacterium E. coli and the intracellular parasite T. gondii, indicating a compromised ability of macrophages to defend against pathogens. Intriguingly, macrophages exposed to TIP had significantly greater m 6 A levels, which correlated with the greater expression levels of m 6 A methyltransferases. Macrophages exposed to each of the three 2,4,6-trihalophenols exhibited transcriptome-wide redistribution of m 6 A . In particular, the m 6 A peaks in genes associated with immune-related pathways were altered after exposure. In addition, differences in m 6 A were also observed in human PBMCs after exposure to 2,4,6-trihalophenols. DISCUSSION These findings suggest that 2,4,6-trihalophenol exposure impaired the ability of macrophages to defend against pathogens. This response might be associated with notable differences in m 6 A after exposure. To the best of our knowledge, this study presents the first m 6 A landscape across the transcriptome of immune cells exposed to pollutants. However, significant challenges remain in elucidating the mechanisms by which m 6 A mediates immune dysregulation in infected macrophages after 2,4,6-trihalophenol exposure. https://doi.org/10.1289/EHP11329.
Collapse
Affiliation(s)
- Min Qin
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linyuan Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, China
| | - Meishuang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Tianye Shao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoqin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Chenlu Shao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengsi Zhao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yong Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
10
|
Wu HD, Yang LW, Deng DY, Jiang RN, Song ZK, Zhou LT. The effects of brominated flame retardants (BFRs) on pro-atherosclerosis mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115325. [PMID: 37544066 DOI: 10.1016/j.ecoenv.2023.115325] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Brominated flame-retardants (BFRs) are environmental endocrine disruptors, comprising several pollutants, which potentially affect the endocrine system and cause dysfunction and disease. Widespread BFR exposure may cause multisystem toxicity, including cardiovascular toxicity in some individuals. Studies have shown that BFRs not only increase heart rate, induce arrhythmia and cardiac hypertrophy, but also cause glycolipid metabolism disorders, vascular endothelial dysfunction, and inflammatory responses, all of which potentially induce pre-pathological changes in atherosclerosis. Experimental data indicated that BFRs disrupt gene expression or signaling pathways, which cause vascular endothelial dysfunction, lipid metabolism-related disease, inflammation, and possibly atherosclerosis. Considerable evidence now suggests that BFR exposure may be a pro-atherosclerotic risk factor. In this study, we reviewed putative BFR effects underpinning pro-atherosclerosis mechanisms, and focused on vascular endothelial cell dysfunction, abnormal lipid metabolism, pro-inflammatory cytokine production and foam cell formation. Consequently, we proposed a scientific basis for preventing atherosclerosis by BFRs and provided concepts for further research.
Collapse
Affiliation(s)
- Hai-Di Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Li-Wei Yang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Da-Yong Deng
- Department of Radiology, Jilin Provincial Cancer Hospital, 1066 Jinhu Road, 130000 Changchun, China
| | - Rong-Na Jiang
- Department of Intensive Care Unit, Jilin Provincial Cancer Hospital, 1066 Jinhu Road, 130000 Changchun, China
| | - Zi-Kai Song
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Li-Ting Zhou
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Zhao Z, Li H, Yao J, Lan J, Bao Y, Zhao L, Zong W, Zhang Q, Hollert H, Zhao X. Binding of Tetrabromobisphenol A and S to Human Serum Albumin Is Weakened by Coexisting Nanoplastics and Environmental Kosmotropes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4464-4470. [PMID: 36893289 DOI: 10.1021/acs.est.2c09090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Human serum albumin (HSA) was used as a model protein to explore the effects of brominated flame retardant (BFR) binding and the corona formation on polystyrene nanoplastics (PNs). Under physiological conditions, HSA helped to disperse PNs but promoted the formation of aggregates in the presence of tetrabromobisphenol A (TBBPA, ΔDh = 135 nm) and S (TBBPS, ΔDh = 256 nm) at pH 7. At pH 4, these aggregates became larger with fewer electrostatic repulsion effects (ΔDh = 920 and 691 nm for TBBPA and TBBPS, respectively). However, such promotion effects as well as BFR binding are different due to structural differences of tetrabromobisphenol A and S. Environmental kosmotropes efficiently stabilized the structure of HSA and inhibited BFR binding, while the chaotropes favored bioconjugated aggregate formation. Such effects were also verified in natural seawater. The newly gained knowledge may help us anticipate the behavior and fate of plastic particles and small molecular pollutants in both physiological and natural aqueous systems.
Collapse
Affiliation(s)
- Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haimei Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jiaqiang Yao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lining Zhao
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qing Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Henner Hollert
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany
| | - Xingchen Zhao
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany
| |
Collapse
|
12
|
Miao B, Yakubu S, Zhu Q, Issaka E, Zhang Y, Adams M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023; 28:2505. [PMID: 36985477 PMCID: PMC10054480 DOI: 10.3390/molecules28062505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a known endocrine disruptor employed in a range of consumer products and has been predominantly found in different environments through industrial processes and in human samples. In this review, we aimed to summarize published scientific evidence on human biomonitoring, toxic effects and mode of action of TBBPA in humans. Interestingly, an overview of various pretreatment methods, emerging detection methods, and treatment methods was elucidated. Studies on exposure routes in humans, a combination of detection methods, adsorbent-based treatments and degradation of TBBPA are in the preliminary phase and have several limitations. Therefore, in-depth studies on these subjects should be considered to enhance the accurate body load of non-invasive matrix, external exposure levels, optimal design of combined detection techniques, and degrading technology of TBBPA. Overall, this review will improve the scientific comprehension of TBBPA in humans as well as the environment, and the breakthrough for treating waste products containing TBBPA.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Salome Yakubu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingsong Zhu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mabruk Adams
- School of Civil Engineering, National University of Ireland, H91 TK33 Galway, Ireland
| |
Collapse
|
13
|
Li M, Gong J, Ge L, Gao H, Yang J, Yang C, Kang J, Fang Y, Xu H. Development of human retinal organoid models for bisphenol toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114094. [PMID: 36126549 DOI: 10.1016/j.ecoenv.2022.114094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols, including Bisphenol A (BPA), Tetrabromobisphenol A (TBBPA), and Tetrabromobisphenol S (TBBPS), have been widely applied in the production of polycarbonate plastics and epoxy resins and have been detected in the environment worldwide. The frequent detection of bisphenols in maternal and fetal samples has raised concerns about their toxic effects on human embryonic development, especially on the development of the central nervous system. However, the effect of bisphenols on human retinal development is still unknown. In this study, to evaluate the toxicity of bisphenols on early retinal development, human embryonic stem cells were induced to differentiate into retinal organoids that responded to BPA, TBBPA, and TBBPS, at human exposure relevant concentrations. The global gene expression of retinal organoids was analyzed by RNA sequencing (RNA-seq). A set of retinal development-related biological processes, including neuron differentiation, phototransduction, axon guidance, and retina layer formation, were identified in retinal organoids corresponding to different developmental stages. The RNA-seq data also showed that BPA, TBBPA, and TBBPS influenced retinal development by interfering with the Cytokine-cytokine receptor interaction pathway. HSPA6, HIF1A-AS3, CDC20B, IL19, OAS1, HSPA7, and RN7SK were dysregulated by these chemicals. Additionally, BPA, TBBPA, and TBBPS exhibited different toxic effects on neural retina development, with TBBPA appearing to exert more toxicity than BPA and TBBPS. Furthermore, three bisphenols exhibited different effects at different stages of neural retina development. The sensitivity of retinal development to bisphenols depends on their developmental stage. This study provides new insights into the deep dissection of retinotoxicity after prenatal bisphenol exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
14
|
Barańska A, Bukowska B, Michałowicz J. Determination of Apoptotic Mechanism of Action of Tetrabromobisphenol A and Tetrabromobisphenol S in Human Peripheral Blood Mononuclear Cells: A Comparative Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186052. [PMID: 36144785 PMCID: PMC9500834 DOI: 10.3390/molecules27186052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
Background: Tetrabromobisphenol A (TBBPA) is the most commonly used brominated flame retardant (BFR) in the industry. TBBPA has been determined in environmental samples, food, tap water, dust as well as outdoor and indoor air and in the human body. Studies have also shown the toxic potential of this substance. In search of a better and less toxic BFR, tetrabromobisphenol S (TBBPS) has been developed in order to replace TBBPA in the industry. There is a lack of data on the toxic effects of TBBPS, while no study has explored apoptotic mechanism of action of TBBPA and TBBPS in human leukocytes. Methods: The cells were separated from leucocyte-platelet buffy coat and were incubated with studied compounds in concentrations ranging from 0.01 to 50 µg/mL for 24 h. In order to explore the apoptotic mechanism of action of tested BFRs, phosphatidylserine externalization at cellular membrane (the number of apoptotic cells), cytosolic calcium ion and transmembrane mitochondrial potential levels, caspase-8, -9 and -3 activation, as well as PARP-1 cleavage, DNA fragmentation and chromatin condensation in PBMCs were determined. Results: TBBPA and TBBPS triggered apoptosis in human PBMCs as they changed all tested parameters in the incubated cells. It was also observed that the mitochondrial pathway was mainly involved in the apoptotic action of studied compounds. Conclusions: It was found that TBBPS, and more strongly TBBPA, triggered apoptosis in human PBMCs. Generally, the mitochondrial pathway was involved in the apoptotic action of tested compounds; nevertheless, TBBPS more strongly than TBBPA caused intrinsic pathway activation.
Collapse
|
15
|
Apoptosis-Inducing Potential of Selected Bromophenolic Flame Retardants 2,4,6-Tribromophenol and Pentabromophenol in Human Peripheral Blood Mononuclear Cells. Molecules 2022; 27:molecules27165056. [PMID: 36014294 PMCID: PMC9413844 DOI: 10.3390/molecules27165056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: 2,4,6-Tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) are utilized as brominated flame retardants (BFRs) in order to reduce the combustion of materials used in various utility products. The presence of 2,4,6-TBP and PBP has been reported in environmental samples as well as in inhaled air, dust, food, drinking water, and the human body. To date, there are limited data concerning the toxic action of 2,4,6-TBP and particularly PBP, and no study has been conducted to assess the apoptotic mechanism of action of these substances in human leukocytes. (2) Methods: PBMCs were isolated from leukocyte–platelet buffy coat and treated with tested substances in concentrations ranging from 0.01 to 50 µg/mL for 24 h. The apoptotic mechanism of action of the tested BFRs was assessed by the determination of phosphatidylserine exposure on the PBMCs surface, the evaluation of mitochondrial potential and cytosolic calcium ion levels, and the determination of caspase-8, -9, and -3 activation. Moreover, poly (ADP-ribose) polymerase-1 (PARP-1) cleavage, DNA fragmentation, and chromatin condensation were analyzed. (3) Results: 2,4,6-TBP and, more strongly, PBP induced apoptosis in PBMCs, changing all tested parameters. It was also found that the mitochondrial pathway was mainly involved in the apoptosis of PBMCs exposed to the studied compounds. (4) Conclusions: 2,4,6-TBP and PBP triggered apoptosis in human PBMCs, and some observed changes occurred at 2,4,6-TBP concentrations that were detected in humans occupationally exposed to this substance.
Collapse
|