1
|
Liu HC, Zhu HM, Li M, Chen BR, Yang ZY, Wang Y, Wang SZ, Chen SQ, Lin JP. Chinese Tuina ameliorates muscle damage by regulating endoplasmic reticulum stress and autophagy in a rat model of skeletal muscle contusion. Tissue Cell 2025; 95:102874. [PMID: 40168839 DOI: 10.1016/j.tice.2025.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 04/03/2025]
Abstract
Chinese Tuina has been used to treat skeletal muscle contusion (SMC) for a long time in China, yet its efficacy and mechanisms remain unclear. Previous studies have shown the vital roles of endoplasmic reticulum (ER) stress and autophagy during injured skeletal muscle recovery, we postulated that Chinese Tuina could expedite the healing of SMC by fine-tuning these processes. In this study, we established a rat model of SMC through weight-dropping and divided the rats into three groups: SMC, SMC+Tuina, and SMC+Tuina+ 3-methyladenine (3-MA) groups, while using untreated normal SD rats as a control. We assessed gait and edema via CatWalk gait analysis and swelling measurements, respectively. Tumor necrosis factor-α (TNF-α) expression was determined by immunohistochemistry (IHC). Morphological and ultrastructural alterations in the damaged muscle tissue were examined using hematoxylin and eosin (HE) staining and transmission electron microscopy (TEM), respectively. Expression of GRP78, LC3B and FAM134b was determined by western blot, and Colocalization of LC3B and FAM134b was examined by immunofluorescence. SMC+Tuina exhibited significantly improved gait and reduced edema. SMC+Tuina showed improvements in morphology and ultrastructure of damaged muscles, as well as decreased expression of TNF-α. Additionally, in SMC+Tuina, expression of GRP78 was downregulated, while expressions of FAM134 and LC3B were upregulated, and colocalization of FAM134 and LC3B was also enhanced. However, autophagy inhibitor 3-MA weakened the aforementioned effects of Chinese Tuina. The obtained results indicated that Chinese Tuina has a positive therapeutic effect in rats with SMC, potentially by promoting autophagy to reduce inflammation and ER stress.
Collapse
Affiliation(s)
- Hai-Chao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hao-Ming Zhu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ming Li
- School of Health, Fujian Medical University, Fuzhou, China
| | - Bo-Rui Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zheng-Yu Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shi-Zhong Wang
- School of Health, Fujian Medical University, Fuzhou, China.
| | - Shao-Qing Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Jian-Ping Lin
- School of Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Wang C, Wang Z, Wang S, Jing L, Gu C. KDELR3 is transcriptionally activated by FOXM1 and accelerates lung adenocarcinoma growth and metastasis via inhibiting endoplasmic reticulum stress-induced cell apoptosis. Hum Cell 2025; 38:106. [PMID: 40411680 DOI: 10.1007/s13577-025-01238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 05/14/2025] [Indexed: 05/26/2025]
Abstract
Lung cancer is still considered to be the leading cause of cancer-related death worldwide, and lung adenocarcinoma (LUAD) is the most common kind. KDEL Endoplasmic Reticulum Protein Retention Receptor 3 (KDELR3) is a critical regulator of the endoplasmic reticulum (ER) stress and the followed unfolded protein response (UPR) process, which are critical in tumor development. However, the role of KDELR3 in LUAD tumor progression remains poorly understood. In this work, we demonstrated that KDELR3 is significantly upregulated in LUAD tumor tissues and cell lines. Suppression of KDELR3 promoted the phosphorylation level of UPR-related pathways, PERK, and EIF2α in LUAD cell lines. The downregulation of KDELR3 promoted ER stress-induced cell apoptosis, decreased the protein expression of Bcl-2, and increased the protein expression of Bax in LUAD cells. Moreover, the knockdown of KDELR3 inhibits LUAD cell invasion. In vivo animal experiments confirmed that the inhibition of KDELR3 suppresses LUAD tumor growth and metastasis. Mechanistic studies showed that transcription factor FOXM1 may serve as an upstream factor of KDELR3. The upregulation of FOXM1 increased the transcriptional activity of KDELR3. Further results illustrated that FOXM1 directly binds to the promoter of KDELR3, thus upregulating its expression. Finally, rescue experiments demonstrated that FOXM1 inhibition-induced cell apoptosis and invasion could be reversed by KDELR3 overexpression. Overall, our findings indicated that KDELR3 is transcriptionally upregulated by FOXM1 and accelerates tumor growth and lung metastasis in LUAD by inhibiting ER stress-induced cell apoptosis.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Department of Thoracic Surgery, Xishan People's Hospital of Wuxi City, Wuxi, 214105, Jiangsu, People's Republic of China
| | - Zhaoxuan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
| | - Shiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
| | - Lin Jing
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Ibrahim A, Mohamady Farouk Abdalsalam N, Liang Z, Kashaf Tariq H, Li R, O Afolabi L, Rabiu L, Chen X, Xu S, Xu Z, Wan X, Yan D. MDSC checkpoint blockade therapy: a new breakthrough point overcoming immunosuppression in cancer immunotherapy. Cancer Gene Ther 2025; 32:371-392. [PMID: 40140724 PMCID: PMC11976280 DOI: 10.1038/s41417-025-00886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Despite the success of cancer immunotherapy in treating hematologic malignancies, their efficacy in solid tumors remains limited due to the immunosuppressive tumor microenvironment (TME), which is mainly formed by myeloid-derived suppressor cells (MDSCs). MDSCs not only exert potent immunosuppressive effects that hinder the success of immune checkpoint inhibitors (ICIs) and adaptive cellular therapies, but they also promote tumor advancement through non-immunological pathways, including promoting angiogenesis, driving epithelial-mesenchymal transition (EMT), and contributing to the establishment of pre-metastatic environments. While targeting MDSCs alone or in combination with conventional therapies has shown limited success, emerging evidence suggests that MDSC checkpoint blockade in combination with other immunotherapies holds great promise in overcoming both immunological and non-immunological barriers. In this review, we discussed the dual roles of MDSCs, with a particular emphasis on their underexplored checkpoints blockade strategies. We discussed the rationale behind combination strategies, their potential advantages in overcoming MDSC-mediated immunosuppression, and the challenges associated with their development. Additionally, we highlight future research directions aimed at optimizing combination immunotherapies to enhance cancer therapeutic effectiveness, particularly in solid tumor therapies where MDSCs are highly prevalent.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Zihao Liang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Hafiza Kashaf Tariq
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Rong Li
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, South Bend, IN, 46617, USA
| | - Lawan Rabiu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Xuechen Chen
- College of Pharmacy, Jinan University, 511436, Guangzhou, China.
| | - Shu Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China
| | - Zhiming Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China.
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| |
Collapse
|
4
|
Ji Y, Jiang Q, Chen B, Chen X, Li A, Shen D, Shen Y, Liu H, Qian X, Yao X, Sun H. Endoplasmic reticulum stress and unfolded protein response: Roles in skeletal muscle atrophy. Biochem Pharmacol 2025; 234:116799. [PMID: 39952329 DOI: 10.1016/j.bcp.2025.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/18/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Skeletal muscle atrophy is commonly present in various pathological states, posing a huge burden on society and patients. Increased protein hydrolysis, decreased protein synthesis, inflammatory response, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are all important molecular mechanisms involved in the occurrence and development of skeletal muscle atrophy. The potential mechanisms of ERS and UPR in skeletal muscle atrophy are extremely complex and have not yet been fully elucidated. This article elucidates the molecular mechanisms of ERS and UPR, and discusses their effects on different types of muscle atrophy (muscle atrophy caused by disuse, cachexia, chronic kidney disease (CKD), diabetes mellitus (DM), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), aging, sarcopenia, obesity, and starvation), and explores the preventive and therapeutic strategies targeting ERS and UPR in skeletal muscle atrophy, including inhibitor therapy and drug therapy. This review aims to emphasize the importance of endoplasmic reticulum (ER) in maintaining skeletal muscle homeostasis, which helps us further understand the molecular mechanisms of skeletal muscle atrophy and provides new ideas and insights for the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Quan Jiang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province 215500, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Dingding Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
5
|
Kamal KY, Trombetta-Lima M. Mechanotransduction and Skeletal Muscle Atrophy: The Interplay Between Focal Adhesions and Oxidative Stress. Int J Mol Sci 2025; 26:2802. [PMID: 40141444 PMCID: PMC11943188 DOI: 10.3390/ijms26062802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical unloading leads to profound musculoskeletal degeneration, muscle wasting, and weakness. Understanding the specific signaling pathways involved is essential for uncovering effective interventions. This review provides new perspectives on mechanotransduction pathways, focusing on the critical roles of focal adhesions (FAs) and oxidative stress in skeletal muscle atrophy under mechanical unloading. As pivotal mechanosensors, FAs integrate mechanical and biochemical signals to sustain muscle structural integrity. When disrupted, these complexes impair force transmission, activating proteolytic pathways (e.g., ubiquitin-proteasome system) that accelerate atrophy. Oxidative stress, driven by mitochondrial dysfunction and NADPH oxidase-2 (NOX2) hyperactivation, exacerbates muscle degeneration through excessive reactive oxygen species (ROS) production, impaired repair mechanisms, and dysregulated redox signaling. The interplay between FA dysfunction and oxidative stress underscores the complexity of muscle atrophy pathogenesis: FA destabilization heightens oxidative damage, while ROS overproduction further disrupts FA integrity, creating a self-amplifying vicious cycle. Therapeutic strategies, such as NOX2 inhibitors, mitochondrial-targeted antioxidants, and FAK-activating compounds, promise to mitigate muscle atrophy by preserving mechanotransduction signaling and restoring redox balance. By elucidating these pathways, this review advances the understanding of muscle degeneration during unloading and identifies promising synergistic therapeutic targets, emphasizing the need for combinatorial approaches to disrupt the FA-ROS feedback loop.
Collapse
Affiliation(s)
- Khaled Y. Kamal
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9700 Groningen, The Netherlands;
| |
Collapse
|
6
|
Braun AC, Oliveira TC, Thomazini LCD, Argenti G, Kotzian BJ, Machado V, Conte JHM, Zanfir C, Souto ACA, Ulian B, Vidart J, Wajner SM. Induced Types 2 and 3 Deiodinase in Non-Thyroidal Illness Syndrome and the Implications to Critical Illness-Induced Myopathy-A Prospective Cohort Study. Int J Mol Sci 2025; 26:2410. [PMID: 40141055 PMCID: PMC11941936 DOI: 10.3390/ijms26062410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Loss of muscle mass and strength is a common condition associated with adverse outcomes in critically ill patients. Here, we determined the correlation between non-thyroidal illness (NTIS) and molecular alterations in the muscle of critically ill individuals. We evaluated deiodinase expression, intramuscular triiodothyronine (T3) levels, and mitochondria and sarcoplasmic reticulum components. The cellular colocalization of the enzymes and its influence on myocytes and genes regulated by T3 were shown, including those of mitochondria. A prospective cohort of 96 patients. Blood and muscular samples were collected on admission to the intensive care unit (ICU), as well as clinical data and ultrasonographic measurements. Patients with NTIS showed increased oxidative stress markers associated with critical illness in muscle biopsy, such as carbonyl content and low sulfhydryl and GSH. The distribution pattern of deiodinases in muscle and its biochemical properties showed significant pathophysiological linkage between NTIS and muscle loss, as type 3-deiodinase (D3) was highly expressed in stem cells, preventing their differentiation in mature myocytes. Despite the high type 2-deiodinase (D2) expression in muscle tissue in the acute phase of critical illness, T3 was unmeasurable in the samples. In this scenario, we also demonstrated impaired expression of glucose transporters GLUT4, IRS1, and 2, which are involved in muscle illness. Here, we provide evidence that altered thyroid hormone metabolism contributes to stem cell dysfunction and further explain the mechanisms underlying critical illness-induced myopathy.
Collapse
Affiliation(s)
- André Cardoso Braun
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Thaliane Carvalho Oliveira
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Ludmilla C. D. Thomazini
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Gustavo Argenti
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Bruno Jaskulski Kotzian
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Valentina Machado
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - João Henrique M. Conte
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Carolina Zanfir
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Amanda C. A. Souto
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Bruna Ulian
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Josi Vidart
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Simone Magagnin Wajner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Osana S, Tsai CT, Suzuki N, Murayama K, Kaneko M, Hata K, Takada H, Kano Y, Nagatomi R. Inhibition of methionine aminopeptidase in C2C12 myoblasts disrupts cell integrity via increasing endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119901. [PMID: 39814187 DOI: 10.1016/j.bbamcr.2025.119901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Proteasome-dependent protein degradation and the digestion of peptides by aminopeptidases are essential for myogenesis. Methionine aminopeptidases (MetAPs) are uniquely involved in, both, the proteasomal degradation of proteins and in the regulation of translation (via involvement in post-translational modification). Suppressing MetAP1 and MetAP2 expression inhibits the myogenic differentiation of C2C12 myoblasts. However, the molecular mechanism by which inhibiting MetAPs impairs cellular function remains to be elucidated. Here, we provide evidence for our hypothesis that MetAPs regulate proteostasis and that their inhibition increases ER stress by disrupting the post-translational modification, and thereby compromises cell integrity. Thus, using C2C12 myoblasts, we investigate the effect of inhibiting MetAPs on cell proliferation and the molecular mechanisms underpinning its effects. We found that exposure to bengamide B (a MetAP inhibitor) caused C2C12 myoblasts to lose their proliferative abilities via cell cycle arrest. The underlying mechanism involved the accumulation of abnormal proteins (due to the decrease in the N-terminal methionine removal function) which led to increased endoplasmic reticulum stress, decreased protein synthesis, and a protective activation of the autophagy pathway. To identify the MetAP involved in these effects, we use siRNAs to specifically knockdown MetAP1 and MetAP2 expressions. We found that only MetAP2 knockdown mimicked the effects seen with bengamide B treatment. Thus, we suggest that MetAP2, rather than MetAP1, is involved in maintaining the integrity of C2C12 myoblasts. Our results are useful in understanding muscle regeneration, obesity, and overeating disorders. It will help guide new treatment strategies for these disorders.
Collapse
Affiliation(s)
- Shion Osana
- Department of Sports and Medical Science, Graduate School of Emergency Medical System, Kokushikan University, Tokyo 206-8515, Japan; Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo 182-8585, Japan.
| | - Cheng-Ta Tsai
- The Institute of Physical Education, Kokushikan University, Tokyo 206-8515, Japan
| | - Naoki Suzuki
- Department of Rehabilitation Medicine, Graduate School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Miyagi 980-8575, Japan
| | - Masaki Kaneko
- The Institute of Physical Education, Kokushikan University, Tokyo 206-8515, Japan
| | - Katsuhiko Hata
- Department of Sports and Medical Science, Graduate School of Emergency Medical System, Kokushikan University, Tokyo 206-8515, Japan
| | - Hiroaki Takada
- Designing Future Health Initiative, Center for Promotion of Innovation Strategy, Head Office of Enterprise Partnerships, Tohoku University, Miyagi 980-8579, Japan
| | - Yutaka Kano
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo 182-8585, Japan; Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo 182-8585, Japan
| | - Ryoichi Nagatomi
- Designing Future Health Initiative, Center for Promotion of Innovation Strategy, Head Office of Enterprise Partnerships, Tohoku University, Miyagi 980-8579, Japan.
| |
Collapse
|
8
|
Serano M, Perni S, Pierantozzi E, Laurino A, Sorrentino V, Rossi D. Intracellular Membrane Contact Sites in Skeletal Muscle Cells. MEMBRANES 2025; 15:29. [PMID: 39852269 PMCID: PMC11767089 DOI: 10.3390/membranes15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca2+ storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle. These contact sites primarily involve the plasma membrane; among these, specialized membrane contact sites between the transverse tubules and the terminal cisternae of the sarcoplasmic reticulum form triads. Triads are skeletal muscle-specific contact sites where Ca2+ channels and regulatory proteins assemble to form the so-called calcium release complex. Additionally, the sarcoplasmic reticulum contacts mitochondria to enable a more precise regulation of Ca2+ homeostasis and energy metabolism. The sarcoplasmic reticulum and the plasma membrane also undergo dynamic remodeling to allow Ca2+ entry from the extracellular space and replenish the stores. This process involves the formation of dynamic membrane contact sites called Ca2+ Entry Units. This review explores the key processes in biogenesis and assembly of intracellular membrane contact sites as well as the membrane remodeling that occurs in response to muscle fatigue.
Collapse
Affiliation(s)
- Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Stefano Perni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
9
|
Guo Y, Shan W, Xiang J. Predictive modeling of ICU-AW inflammatory factors based on machine learning. BMC Neurol 2024; 24:483. [PMID: 39702112 DOI: 10.1186/s12883-024-03981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND ICU-acquired weakness (ICU-AW) is a common complication among ICU patients. We used machine learning techniques to construct an ICU-AW inflammatory factor prediction model to predict the risk of disease development and reduce the incidence of ICU-AW. METHODS The least absolute shrinkage and selection operator (LASSO) technique was used to screen key variables related to ICU-AW. Eleven indicators, such as the presence of sepsis, glucocorticoids (GC), neuromuscular blocking agents (NBAs), length of ICU stay, Acute Physiology and Chronic Health Evaluation (APACHE II) II score, and the levels of albumin (ALB), lactate (LAC), glucose (GLU), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-10 (IL-10), were used as variables to establish the prediction model. We divided the data into a dataset that included inflammatory factors and a dataset that excluded inflammatory factors. Specifically, 70% of the participants in both datasets were used as the training set, and 30% of the participants were used as the test set. Three machine learning methods, logistic regression (LR), random forest (RF), and extreme gradient boosting (XGB), were used in the 70% participant training set to construct six different models, which were validated and evaluated in the remaining 30% of the participants as the test set. The optimal model was visualized for prediction using nomograms. RESULTS The logistic regression model including the inflammatory factors demonstrated excellent performance on the test set, with an area under the curve (AUC) of 82.1% and the best calibration curve fit, outperforming the other five models. The optimal model is represented visually in the nomograms. CONCLUSION This study used easily accessible clinical characteristics and laboratory data that can aid in early clinical recognition of ICU-AW. The inflammatory factors IL-1β, IL-6, and IL-10 have high value for predicting ICU-AW. TRIAL REGISTRATION The trial was registered at the Chinese Clinical Trial Registry with the registration number ChiCTR2300077968.
Collapse
Affiliation(s)
- Yuanyaun Guo
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Wenpeng Shan
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Xiang
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
10
|
Guo Z, Chi R, Peng Y, Sun K, Liu H, Guo F, Guo J. The Role and Interactive Mechanism of Endoplasmic Reticulum Stress and Ferroptosis in Musculoskeletal Disorders. Biomolecules 2024; 14:1369. [PMID: 39595546 PMCID: PMC11591632 DOI: 10.3390/biom14111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular phenomenon that arises in response to the accumulation of misfolded proteins within the ER. This process triggers the activation of a signalling pathway known as the unfolded protein response (UPR), which aims to restore ER homeostasis by reducing protein synthesis, increasing protein degradation, and promoting proper protein folding. However, excessive ER stress can perturb regular cellular function and contribute to the development of diverse pathological conditions. As is well known, ferroptosis is a kind of programmed cell death characterized by the accumulation of lipid peroxides and iron-dependent reactive oxygen species (ROS), resulting in oxidative harm to cellular structures. In recent years, there has been increasing evidence indicating that ferroptosis occurs in musculoskeletal disorders (MSDs), with emerging recognition of the complex relationship between ER stress and ferroptosis. This review presents a summary of ER stress and the ferroptosis pathway. Most importantly, it delves into the significance of ER stress in the ferroptosis process within diverse skeletal or muscle cell types. Furthermore, we highlight the potential benefits of targeting the correlation between ER stress and ferroptosis in treating degenerative MSDs.
Collapse
Affiliation(s)
- Zhou Guo
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yawen Peng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kai Sun
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Haigang Liu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Fengjing Guo
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Wang Y, Xu Y, Zhao T, Ma YJ, Qin W, Hu WL. PEI/MMNs@LNA-542 nanoparticles alleviate ICU-acquired weakness through targeted autophagy inhibition and mitochondrial protection. Open Life Sci 2024; 19:20220952. [PMID: 39290495 PMCID: PMC11406224 DOI: 10.1515/biol-2022-0952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Intensive care unit-acquired weakness (ICU-AW) is prevalent in critical care, with limited treatment options. Certain microRNAs, like miR-542, are highly expressed in ICU-AW patients. This study investigates the regulatory role and mechanisms of miR-542 in ICU-AW and explores the clinical potential of miR-542 inhibitors. ICU-AW models were established in C57BL/6 mice through cecal ligation and puncture (CLP) and in mouse C2C12 myoblasts through TNF-α treatment. In vivo experiments demonstrated decreased muscle strength, muscle fiber atrophy, widened intercellular spaces, and increased miR-542-3p/5p expression in ICU-AW mice model. In vitro experiments indicated suppressed ATG5, ATG7 and LC3II/I, elevated MDA and ROS levels, decreased SOD levels, and reduced MMP in the model group. Similar to animal experiments, the expression of miR-542-3p/5p was upregulated. Gel electrophoresis explored the binding of polyethyleneimine/mesoporous silica nanoparticles (PEI/MMNs) to locked nucleic acid (LNA) miR-542 inhibitor (LNA-542). PEI/MMNs@LNA-542 with positive charge (3.03 ± 0.363 mV) and narrow size (206.94 ± 6.19 nm) were characterized. Immunofluorescence indicated significant internalization with no apparent cytotoxicity. Biological activity, examined through intraperitoneal injection, showed that PEI/MMNs@LNA-542 alleviated muscle strength decline, restored fiber damage, and recovered mitochondrial injury in mice. In conclusion, PEI/MMNs nanoparticles effectively delivered LNA-542, targeting ATG5 to inhibit autophagy and alleviate mitochondrial damage, thereby improving ICU-AW.
Collapse
Affiliation(s)
- Yun Wang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tun Zhao
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ya-Jun Ma
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Qin
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen-Li Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
12
|
Chen R, Zheng Y, Zhou C, Dai H, Wang Y, Chu Y, Luo J. N-Acetylcysteine Attenuates Sepsis-Induced Muscle Atrophy by Downregulating Endoplasmic Reticulum Stress. Biomedicines 2024; 12:902. [PMID: 38672256 PMCID: PMC11048408 DOI: 10.3390/biomedicines12040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Sepsis-induced muscle atrophy is characterized by a loss of muscle mass and function which leads to decreased quality of life and worsens the long-term prognosis of patients. N-acetylcysteine (NAC) has powerful antioxidant and anti-inflammatory properties, and it relieves muscle wasting caused by several diseases, whereas its effect on sepsis-induced muscle atrophy has not been reported. The present study investigated the effect of NAC on sepsis-induced muscle atrophy and its possible mechanisms. (2) Methods: The effect of NAC on sepsis-induced muscle atrophy was assessed in vivo and in vitro using cecal ligation and puncture-operated (CLP) C57BL/6 mice and LPS-treated C2C12 myotubes. We used immunofluorescence staining to analyze changes in the cross-sectional area (CSA) of myofibers in mice and the myotube diameter of C2C12. Protein expressions were analyzed by Western blotting. (3) Results: In the septic mice, the atrophic response manifested as a reduction in skeletal muscle weight and myofiber cross-sectional area, which is mediated by muscle-specific ubiquitin ligases-muscle atrophy F-box (MAFbx)/Atrogin-1 and muscle ring finger 1 (MuRF1). NAC alleviated sepsis-induced skeletal muscle wasting and LPS-induced C2C12 myotube atrophy. Meanwhile, NAC inhibited the sepsis-induced activation of the endoplasmic reticulum (ER) stress signaling pathway. Furthermore, using 4-Phenylbutyric acid (4-PBA) to inhibit ER stress in LPS-treated C2C12 myotubes could partly abrogate the anti-muscle-atrophy effect of NAC. Finally, NAC alleviated myotube atrophy induced by the ER stress agonist Thapsigargin (Thap). (4) Conclusions: NAC can attenuate sepsis-induced muscle atrophy, which may be related to downregulating ER stress.
Collapse
Affiliation(s)
- Renyu Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Chu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Wan S, Li KP, Wang CY, Yang JW, Chen SY, Wang HB, Li XR, Yang L. Immunologic Crosstalk of Endoplasmic Reticulum Stress Signaling in Bladder Cancer. Curr Cancer Drug Targets 2024; 24:701-719. [PMID: 38265406 DOI: 10.2174/0115680096272663231121100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 01/25/2024]
Abstract
Bladder cancer (BC) is a common malignant tumor of the urinary system. While current approaches involving adjuvant chemotherapy, radiotherapy, and immunotherapy have shown significant progress in BC treatment, challenges, such as recurrence and drug resistance, persist, especially in the case of muscle-invasive bladder cancer (MIBC). It is mainly due to the lack of pre-existing immune response cells in the tumor immune microenvironment. Micro-environmental changes (such as hypoxia and under-nutrition) can cause the aggregation of unfolded and misfolded proteins in the lumen, which induces endoplasmic reticulum (ER) stress. ER stress and its downstream signaling pathways are closely related to immunogenicity and tumor drug resistance. ER stress plays a pivotal role in a spectrum of processes within immune cells and the progression of BC cells, encompassing cell proliferation, autophagy, apoptosis, and resistance to therapies. Recent studies have increasingly recognized the potential of natural compounds to exhibit anti-BC properties through ER stress induction. Still, the efficacy of these natural compounds remains less than that of immune checkpoint inhibitors (ICIs). Currently, the ER stress-mediated immunogenic cell death (ICD) pathway is more encouraging, which can enhance ICI responses by mediating immune stemness. This article provides an overview of the recent developments in understanding how ER stress influences tumor immunity and its implications for BC. Targeting this pathway may soon emerge as a compelling therapeutic strategy for BC.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Kun-Peng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Chen-Yang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou730000, PR China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Hua-Bin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| |
Collapse
|
14
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Zhao S, Feng H, Jiang D, Yang K, Wang ST, Zhang YX, Wang Y, Liu H, Guo C, Tang TS. ER Ca 2+ overload activates the IRE1α signaling and promotes cell survival. Cell Biosci 2023; 13:123. [PMID: 37400935 DOI: 10.1186/s13578-023-01062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Maintaining homeostasis of Ca2+ stores in the endoplasmic reticulum (ER) is crucial for proper Ca2+ signaling and key cellular functions. Although Ca2+ depletion has been known to cause ER stress which in turn activates the unfolded protein response (UPR), how UPR sensors/transducers respond to excess Ca2+ when ER stores are overloaded remain largely unclear. RESULTS Here, we report for the first time that overloading of ER Ca2+ can directly sensitize the IRE1α-XBP1 axis. The overloaded ER Ca2+ in TMCO1-deficient cells can cause BiP dissociation from IRE1α, promote the dimerization and stability of the IRE1α protein, and boost IRE1α activation. Intriguingly, attenuation of the over-activated IRE1α-XBP1s signaling by a IRE1α inhibitor can cause a significant cell death in TMCO1-deficient cells. CONCLUSIONS Our data establish a causal link between excess Ca2+ in ER stores and the selective activation of IRE1α-XBP1 axis, underscoring an unexpected role of overload of ER Ca2+ in IRE1α activation and in preventing cell death.
Collapse
Affiliation(s)
- Song Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongfang Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si-Tong Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Caixia Guo
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Li Q, Sun M, Zhou Q, Li Y, Xu J, Fan H. Integrated analysis of multi-omics data reveals T cell exhaustion in sepsis. Front Immunol 2023; 14:1110070. [PMID: 37077915 PMCID: PMC10108839 DOI: 10.3389/fimmu.2023.1110070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundSepsis is a heterogeneous disease, therefore the single-gene-based biomarker is not sufficient to fully understand the disease. Higher-level biomarkers need to be explored to identify important pathways related to sepsis and evaluate their clinical significance.MethodsGene Set Enrichment Analysis (GSEA) was used to analyze the sepsis transcriptome to obtain the pathway-level expression. Limma was used to identify differentially expressed pathways. Tumor IMmune Estimation Resource (TIMER) was applied to estimate immune cell abundance. The Spearman correlation coefficient was used to find the relationships between pathways and immune cell abundance. Methylation and single-cell transcriptome data were also employed to identify important pathway genes. Log-rank test was performed to test the prognostic significance of pathways for patient survival probability. DSigDB was used to mine candidate drugs based on pathways. PyMol was used for 3-D structure visualization. LigPlot was used to plot the 2-D pose view for receptor-ligand interaction.ResultsEighty-four KEGG pathways were differentially expressed in sepsis patients compared to healthy controls. Of those, 10 pathways were associated with 28-day survival. Some pathways were significantly correlated with immune cell abundance and five pathways could be used to distinguish between systemic inflammatory response syndrome (SIRS), bacterial sepsis, and viral sepsis with Area Under the Curve (AUC) above 0.80. Seven related drugs were screened using survival-related pathways.ConclusionSepsis-related pathways can be utilized for disease subtyping, diagnosis, prognosis, and drug screening.
Collapse
Affiliation(s)
- Qiaoke Li
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Mingze Sun
- Department of Intensive Care Unit, Sichuan Provincial Crops Hospital of Chinese People’s Armed Police Force, Leshan, China
| | - Qi Zhou
- Department of Oncology, Jiang’an Hospital of Traditional Chinese Medicine, Yibin, China
| | - Yulong Li
- Department of Intensive Care Unit, Sichuan Provincial Crops Hospital of Chinese People’s Armed Police Force, Leshan, China
| | - Jinmei Xu
- Department of Intensive Care Unit, Sichuan Provincial Crops Hospital of Chinese People’s Armed Police Force, Leshan, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
- *Correspondence: Hong Fan,
| |
Collapse
|
17
|
Wu J, Ding P, Wu H, Yang P, Guo H, Tian Y, Meng L, Zhao Q. Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Front Nutr 2023; 10:1037200. [PMID: 36819699 PMCID: PMC9932270 DOI: 10.3389/fnut.2023.1037200] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is the foundation of human function and plays a key role in producing exercise, bone protection, and energy metabolism. Sarcopenia is a systemic disease, which is characterized by degenerative changes in skeletal muscle mass, strength, and function. Therefore, sarcopenia often causes weakness, prolonged hospitalization, falls and other adverse consequences that reduce the quality of life, and even lead to death. In recent years, sarcopenia has become the focus of in-depth research. Researchers have suggested some molecular mechanisms for sarcopenia according to different muscle physiology. These mechanisms cover neuromuscular junction lesion, imbalance of protein synthesis and breakdown, satellite cells dysfunction, etc. We summarize the latest research progress on the molecular mechanism of sarcopenia in this review in order to provide new ideas for future researchers to find valuable therapeutic targets and develop relevant prevention strategies.
Collapse
Affiliation(s)
- Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Ping’an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Lingjiao Meng,
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,*Correspondence: Qun Zhao,
| |
Collapse
|