1
|
Wang HF, Zhang C, Zhang LP, Zhen C, Zhao L, Huang HH, Yang BP, Chen SY, Li WZ, Zhou MJ, Guo QX, Li X, Yin BL, Sun F, Zhang JY, Zhang Z, Wang FS, Zeng QL. GNLY+CD8+ T cells bridge premature aging and persistent inflammation in people living with HIV. Emerg Microbes Infect 2025; 14:2466695. [PMID: 40135938 PMCID: PMC11948365 DOI: 10.1080/22221751.2025.2466695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 02/09/2025] [Indexed: 03/27/2025]
Abstract
People living with HIV (PLWH) exhibit accelerated aging, characterized by systemic inflammation, termed "inflammaging." While T-cell expansion is prevalent in PLWH, its connection to inflammaging remains unclear. In this study, we analyzed the TCRβ repertoire of 257 healthy controls (HC) and 228 PLWH, revealing pronounced T cell clonal expansion in PLWH. The expansion was only partially reversed following antiretroviral therapy (ART) and closely associated with ART duration, CD4+ T and CD8+ T cell counts and the CD4/CD8 ratio. TCR-based age modeling showed a continuous accelerated trajectory of aging in PLWH, especially in younger individuals, in stark contrast to the nonlinear aging acceleration pattern seen in HC. Furthermore, using single-cell RNA combined TCR sequencing and in vitro experiments, we identified GNLY+CD8+ T cells as the primary population driving clonal expansion and maintenance in PLWH. These cells are characterized by high cytotoxicity and low exhaustion and are activated by interleukin-15 (IL-15) in vitro. Notably, GNLY+CD8+ T cells predominantly express the pro-inflammatory 15 kDa form of granulysin(GNLY). The supernatant from IL-15-stimulated CD8+ T cells induces monocytes to secrete inflammatory factors and disrupts the integrity of intestinal epithelial cells, which can be partially restored by the anti-GNLY antibodies. These findings identify GNLY+CD8+ T cells as the central drivers of persistent clonal expansion, highlighting their crucial role for mitigating inflammaging in PLWH.
Collapse
Affiliation(s)
- Hui-Fang Wang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Li-Ping Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Liang Zhao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Hui-Huang Huang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Bao-Peng Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Si-Yuan Chen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Wei-Zhe Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qian-Xi Guo
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xia Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Bai-Lu Yin
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Fang Sun
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhixin Zhang
- Department of Technology, Chengdu ExAb Biotechnology LTD, Chengdu, People's Republic of China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qing-Lei Zeng
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
2
|
Ravishankar S, Towlerton AM, Tiamiyu IL, Mooka P, Nankoma J, Kafeero J, Mubiru D, Sekitene S, Aicher LD, Miller CP, Coffey DG, Okoche L, Atwinirembabazi P, Okonye J, White J, Koelle DM, Jing L, Phipps WT, Warren EH. T-cells specific for KSHV and HIV migrate to Kaposi sarcoma tumors and persist over time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.06.579223. [PMID: 38370623 PMCID: PMC10871354 DOI: 10.1101/2024.02.06.579223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi sarcoma (KS), which causes significant morbidity and mortality worldwide, particularly in people living with HIV (PLWH) and in sub-Saharan Africa where KSHV seroprevalence is high. Postulating that T-cells specific for KSHV and HIV would be attracted to KS tumors, we performed transcriptional profiling and T-cell receptor (TCR) repertoire analysis of tumor biopsies from 144 Ugandan adults with KS, 106 of whom were also living with HIV. We show that CD8+ T-cells and M2-polarized macrophages are the most common immune cells in KS tumors. The TCR repertoire of T-cells associated with KS tumors is shared across spatially and temporally distinct tumors from the same individual. Clusters of T-cells with predicted shared specificity for uncharacterized antigens, potentially encoded by KSHV or HIV, comprise ~25% of the T-cells in KS tumors. Single-cell RNA-sequencing of blood from a subset of 9 adults captured 4,283 unique αβ TCRs carried in 14,698 putative KSHV- or HIV-specific T-cells, which carried an antigen-experienced effector phenotype. T-cells engineered to express a representative sample of these TCRs showed high-avidity recognition of KSHV- or HIV-encoded antigens. These results suggest that a poly-specific, high-avidity KSHV- and HIV-specific T-cell response, potentially inhibited by M2 macrophages, migrates to and localizes with KS tumors. Further analysis of KSHV- and HIV-specific T-cells in KS tumors will provide insight into the pathogenesis of KS and could guide the development of specific immune therapy based on adoptive transfer or vaccination.
Collapse
Affiliation(s)
- Shashidhar Ravishankar
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Andrea M.H. Towlerton
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Iyabode L. Tiamiyu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Peter Mooka
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Janet Nankoma
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - James Kafeero
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Uganda Cancer Institute, Kampala, Uganda
| | - Dennis Mubiru
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Uganda Cancer Institute, Kampala, Uganda
| | - Semei Sekitene
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Uganda Cancer Institute, Kampala, Uganda
| | - Lauri D. Aicher
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Chris P. Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - David G. Coffey
- Division of Myeloma, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
| | - Lazarus Okoche
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | | | - Joseph Okonye
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Jessica White
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Warren T. Phipps
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Edus H. Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Hu J, Pan M, Reid B, Tworoger S, Li B. Quantifiable blood TCR repertoire components associate with immune aging. Nat Commun 2024; 15:8171. [PMID: 39289351 PMCID: PMC11408526 DOI: 10.1038/s41467-024-52522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
T cell senescence alters the homeostasis of distinct T cell populations and results in decayed adaptive immune protection in older individuals, but a link between aging and dynamic T cell clone changes has not been made. Here, using a newly developed computational framework, Repertoire Functional Units (RFU), we investigate over 6500 publicly available TCR repertoire sequencing samples from multiple human cohorts and identify age-associated RFUs consistently across different cohorts. Quantification of RFU reduction with aging reveals accelerated loss under immunosuppressive conditions. Systematic analysis of age-associated RFUs in clinical samples manifests a potential link between these RFUs and improved clinical outcomes, such as lower ICU admission and reduced risk of complications, during acute viral infections. Finally, patients receiving bone marrow transplantation show a secondary expansion of the age-associated clones upon stem cell transfer from younger donors. Together, our results suggest the existence of a 'TCR clock' that could reflect the immune functions in aging populations.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mingyao Pan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett Reid
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Shelley Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Knight Cancer Institute and Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Bo Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Reeves DB, Rigau DN, Romero A, Zhang H, Simonetti FR, Varriale J, Hoh R, Zhang L, Smith KN, Montaner LJ, Rubin LH, Gange SJ, Roan NR, Tien PC, Margolick JB, Peluso MJ, Deeks SG, Schiffer JT, Siliciano JD, Siliciano RF, Antar AAR. Mild HIV-specific selective forces overlaying natural CD4+ T cell dynamics explain the clonality and decay dynamics of HIV reservoir cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302704. [PMID: 38405967 PMCID: PMC10888981 DOI: 10.1101/2024.02.13.24302704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRβ) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRβ and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.
Collapse
|
5
|
Sponaugle A, Weideman AMK, Ranek J, Atassi G, Kuruc J, Adimora AA, Archin NM, Gay C, Kuritzkes DR, Margolis DM, Vincent BG, Stanley N, Hudgens MG, Eron JJ, Goonetilleke N. Dominant CD4 + T cell receptors remain stable throughout antiretroviral therapy-mediated immune restoration in people with HIV. Cell Rep Med 2023; 4:101268. [PMID: 37949070 PMCID: PMC10694675 DOI: 10.1016/j.xcrm.2023.101268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/05/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
In people with HIV (PWH), the post-antiretroviral therapy (ART) window is critical for immune restoration and HIV reservoir stabilization. We employ deep immune profiling and T cell receptor (TCR) sequencing and examine proliferation to assess how ART impacts T cell homeostasis. In PWH on long-term ART, lymphocyte frequencies and phenotypes are mostly stable. By contrast, broad phenotypic changes in natural killer (NK) cells, γδ T cells, B cells, and CD4+ and CD8+ T cells are observed in the post-ART window. Whereas CD8+ T cells mostly restore, memory CD4+ T subsets and cytolytic NK cells show incomplete restoration 1.4 years post ART. Surprisingly, the hierarchies and frequencies of dominant CD4 TCR clonotypes (0.1%-11% of all CD4+ T cells) remain stable post ART, suggesting that clonal homeostasis can be independent of homeostatic processes regulating CD4+ T cell absolute number, phenotypes, and function. The slow restoration of host immunity post ART also has implications for the design of ART interruption studies.
Collapse
Affiliation(s)
- Alexis Sponaugle
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Ann Marie K Weideman
- Department of Biostatistics, UNC Chapel Hill, Chapel Hill, NC, USA; Center for AIDS Research, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jolene Ranek
- Computational Medicine Program, UNC Chapel Hill, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - JoAnn Kuruc
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Adaora A Adimora
- Center for AIDS Research, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Nancie M Archin
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia Gay
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David M Margolis
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Computational Medicine Program, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, UNC Chapel Hill, Chapel Hill, NC, USA; Center for AIDS Research, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Joseph J Eron
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Konstantinovsky T, Yaari G. A novel approach to T-cell receptor beta chain (TCRB) repertoire encoding using lossless string compression. Bioinformatics 2023; 39:btad426. [PMID: 37417959 PMCID: PMC10348835 DOI: 10.1093/bioinformatics/btad426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
MOTIVATION T-cell receptor beta chain (TCRB) repertoires are crucial for understanding immune responses. However, their high diversity and complexity present significant challenges in representation and analysis. The main motivation of this study is to develop a unified and compact representation of a TCRB repertoire that can efficiently capture its inherent complexity and diversity and allow for direct inference. RESULTS We introduce a novel approach to TCRB repertoire encoding and analysis, leveraging the Lempel-Ziv 76 algorithm. This approach allows us to create a graph-like model, identify-specific sequence features, and produce a new encoding approach for an individual's repertoire. The proposed representation enables various applications, including generation probability inference, informative feature vector derivation, sequence generation, a new measure for diversity estimation, and a new sequence centrality measure. The approach was applied to four large-scale public TCRB sequencing datasets, demonstrating its potential for a wide range of applications in big biological sequencing data. AVAILABILITY AND IMPLEMENTATION Python package for implementation is available https://github.com/MuteJester/LZGraphs.
Collapse
Affiliation(s)
- Thomas Konstantinovsky
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|