1
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Pathogenesis and Systemic Treatment of Hepatocellular Carcinoma: Current Status and Prospects. Mol Cancer Ther 2025; 24:692-708. [PMID: 39417575 DOI: 10.1158/1535-7163.mct-24-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the major threats to human health worldwide. The emergence of systemic therapeutic options has greatly improved the prognosis of patients with HCC, particularly those with advanced stages of the disease. In this review, we discussed the pathogenesis of HCC, genetic alterations associated with the development of HCC, and alterations in the tumor immune microenvironment. Then, important indicators and emerging technologies related to the diagnosis of HCC are summarized. Also, we reviewed the major advances in treatments for HCC, offering insights into future prospects for next-generation managements.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Lin J, Zhou J, Ye K, Xie F. Prunella vulgaris: A potential molecule for the treatment of hepatocellular carcinoma. Medicine (Baltimore) 2025; 104:e42267. [PMID: 40295240 PMCID: PMC12040002 DOI: 10.1097/md.0000000000042267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Prunella vulgaris (PV) is widely used in treating various diseases, but its relationship with hepatocellular carcinoma (HCC) remains unclear. This study systematically evaluates PV's therapeutic potential in HCC and explores its molecular mechanisms. Active compounds and molecular targets of PV were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and HCC-related targets were identified using the Gene Expression Omnibus database. A drug-disease target network was built to identify key hub genes, which were further investigated through immune analysis, single-cell RNA sequencing, molecular docking, and in vitro experiments. We identified 185 drug targets and 635 HCC-related targets, with 15 potential PV targets linked to HCC progression. In vitro validation confirmed significant expression of these targets in HCC cells. Mechanistic analysis indicated that these hub genes may influence HCC progression through pathways like tumor protein 53 signaling and are associated with immune cell subsets, including CD8+ T cells and natural killer cells. This study identifies key bioactive components of PV for HCC treatment and reveals their molecular mechanisms. Dysregulation of these targets correlates with HCC pathogenesis, suggesting their potential as novel biomarkers. Future research will focus on further validation in vitro and in vivo to explore the clinical applicability of these targets and the synergistic potential of PV in combination with other treatments.
Collapse
Affiliation(s)
- Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Neijiang First People’s Hospital, Neijiang, Sichuan, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiale Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Medical College, Chengdu, Sichuan, China
| | - Kailin Ye
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Neijiang First People’s Hospital, Neijiang, Sichuan, China
| |
Collapse
|
3
|
Morcillo-Martín-Romo P, Valverde-Pozo J, Ortiz-Bueno M, Arnone M, Espinar-Barranco L, Espinar-Barranco C, García-Rubiño ME. The Role of NK Cells in Cancer Immunotherapy: Mechanisms, Evasion Strategies, and Therapeutic Advances. Biomedicines 2025; 13:857. [PMID: 40299429 PMCID: PMC12024875 DOI: 10.3390/biomedicines13040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Natural killer (NK) cells play a crucial role in tumor surveillance by exerting cytotoxic activity and modulating immune responses. However, tumors employ diverse evasion strategies that limit NK cell effectiveness. This review aims to explore the molecular mechanisms of NK cell activation and inhibition in cancer, the influence of the tumor microenvironment, and the latest advancements in NK cell-based immunotherapies, including adoptive NK cell transfer and Chimeric Antigen Receptor-Natural Killer (CAR-NK) cell therapies. Methods: A comprehensive literature review was conducted, prioritizing peer-reviewed studies from the last decade on NK cell biology, tumor immune evasion, and immunotherapeutic applications. The analysis includes data from preclinical models and clinical trials evaluating NK cell expansion strategies, cytokine-based stimulation, and CAR-NK cell therapy developments. Results: NK cells eliminate tumors through cytotoxic granule release, death receptor pathways, and cytokine secretion. However, tumor cells evade NK-mediated immunity by downregulating activating ligands, secreting immunosuppressive molecules, and altering the tumor microenvironment. Novel NK cell-based therapies, such as CAR-NK cells and combination approaches with immune checkpoint inhibitors, enhance NK cell persistence and therapeutic efficacy against both hematologic and solid malignancies. Clinical trials suggest improved safety profiles compared to CAR-T therapies, with reduced cytokine release syndrome and graft-versus-host disease. Conclusions: While NK cell-based immunotherapies hold great promise, challenges remain, including limited persistence and tumor-induced immunosuppression. Addressing these hurdles will be critical for optimizing NK cell therapies and advancing next-generation, off-the-shelf immunotherapeutics for broader clinical applications.
Collapse
Affiliation(s)
- Paula Morcillo-Martín-Romo
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
| | - Javier Valverde-Pozo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
| | - María Ortiz-Bueno
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
| | - Maurizio Arnone
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
| | - Laura Espinar-Barranco
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celia Espinar-Barranco
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain;
| | - María Eugenia García-Rubiño
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
| |
Collapse
|
4
|
Chen YZ, Meng ZS, Zhang YN, Xiang ZL. Natural Killer Cell-Associated Radiogenomics Model for Hepatocellular Carcinoma: Integrating CD2 and Enhanced CT-Derived Radiomics Signatures. Acad Radiol 2025; 32:1981-1992. [PMID: 39542805 DOI: 10.1016/j.acra.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
RATIONALE AND OBJECTIVES Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality. Natural Killer (NK) cells play a crucial role in immune defense against HCC, but their activity is often impaired by the tumor microenvironment (TME). This study aims to integrate radiomics and transcriptomics to develop a prognostic model linking NK cell characteristics to clinical outcomes in HCC. METHODS Transcriptomic data from five cohorts (734 HCC patients) from the Gene Expression Omnibus and The Cancer Genome Atlas databases were analyzed using the Microenvironment Cell Populations-counter algorithm. NK cell-related prognostic biomarkers were identified via weighted gene co-expression network analysis and LASSO-Cox regression. Radiomics models were established using CT imaging features from 239 patients in three datasets from The Cancer Imaging Archive and Shanghai East Hospital. HCC radiogenomic subtypes were proposed by integrating genetic biomarkers and radiomics models. RESULTS CD2 expression was identified as an independent NK cell-related prognostic biomarker, with a positive impact on prognosis and a strong correlation with NK cell-associated biological processes in HCC. A robust radiomics model was constructed, and the integration of CD2 expression with radioscore identified potential radiogenomic subtypes of HCC. CONCLUSION Radiomics has potential to link TME immune phenotypes with HCC prognosis. CD2 is a key biomarker connecting NK cells with radiomic features, offering a new classification of HCC into radiogenomic subtypes. This approach supports the use of radiogenomics in personalized HCC treatment.
Collapse
Affiliation(s)
- Yan-Zhu Chen
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China (Y.Z.C., Z.L.X.)
| | - Zhi-Shang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China (Z.S.M.)
| | - Yan-Nan Zhang
- Department of Radiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China (Y.N.Z.)
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China (Y.Z.C., Z.L.X.); Department of Radiation Oncology, Shanghai East Hospital Ji'an Hospital, Ji'an, China (Z.L.X.).
| |
Collapse
|
5
|
Rea A, Santana-Hernández S, Villanueva J, Sanvicente-García M, Cabo M, Suarez-Olmos J, Quimis F, Qin M, Llorens E, Blasco-Benito S, Torralba-Raga L, Perez L, Bhattarai B, Alari-Pahissa E, Georgoudaki AM, Balaguer F, Juan M, Pardo J, Celià-Terrassa T, Rovira A, Möker N, Zhang C, Colonna M, Spanholtz J, Malmberg KJ, Montagut C, Albanell J, Güell M, López-Botet M, Muntasell A. Enhancing human NK cell antitumor function by knocking out SMAD4 to counteract TGFβ and activin A suppression. Nat Immunol 2025; 26:582-594. [PMID: 40119192 PMCID: PMC11957989 DOI: 10.1038/s41590-025-02103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/30/2025] [Indexed: 03/24/2025]
Abstract
Transforming growth factor beta (TGFβ) and activin A suppress natural killer (NK) cell function and proliferation, limiting the efficacy of adoptive NK cell therapies. Inspired by the partial resistance to TGFβ of NK cells with SMAD4 haploinsufficiency, we used CRISPR-Cas9 for knockout of SMAD4 in human NK cells. Here we show that SMAD4KO NK cells were resistant to TGFβ and activin A inhibition, retaining their cytotoxicity, cytokine secretion and interleukin-2/interleukin-15-driven proliferation. They showed enhanced tumor penetration and tumor growth control, both as monotherapy and in combination with tumor-targeted therapeutic antibodies. Notably, SMAD4KO NK cells outperformed control NK cells treated with a TGFβ inhibitor, underscoring the benefit of maintaining SMAD4-independent TGFβ signaling. SMAD4KO conferred TGFβ resistance across diverse NK cell platforms, including CD19-CAR NK cells, stem cell-derived NK cells and ADAPT-NK cells. These findings position SMAD4 knockout as a versatile and compelling strategy to enhance NK cell antitumor activity, providing a new avenue for improving NK cell-based cancer immunotherapies.
Collapse
Grants
- 765104 EC | EC Seventh Framework Programm | FP7 People: Marie-Curie Actions (FP7-PEOPLE - Specific Programme "People" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- ICI24/00041 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- SGR863 Generalitat de Catalunya (Government of Catalonia)
- 765104 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Sklodowska-Curie Actions (H2020 Excellent Science - Marie Sklodowska-Curie Actions)
- PI21/00002 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI22/00040 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- 2024PROD00089 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- FI23/00075 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- P01 CA111412 NCI NIH HHS
- Ministerio de Ciencia, Innovación y Universidades/FEDER CNS2023-144487
- AECC postdoctoral fellowship POSTD234709BLAS
- Ministerio de Ciencia, Innovación y Universidades PID2020-113963RBI00 Gobierno de Aragón B29-23R
- Ministerio de Ciencia, Innovación y Universidades PID2023-147310OB-I00
- Research Council of Norway 275469, 237579, the Research Council of Norway through its Centres of Excellence scheme 332727, the Norwegian Cancer Society-190386, 223310, The South-Eastern Norway Regional Health Authority 2021-073, 2024-053, Knut and Alice Wallenberg Foundation 2018.0106, Swedish Foundation for Strategic Research, and the US National Cancer Institute P01 CA111412, P009500901.
- CRIS EXCELLENCE 19-30, funded by CRIS Contra el Cáncer
- CIBERONC: CB16/12/00241
Collapse
Affiliation(s)
- Anna Rea
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Javier Villanueva
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Mariona Cabo
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Fabricio Quimis
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mengjuan Qin
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Eduard Llorens
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Lamberto Torralba-Raga
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Lorena Perez
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Bishan Bhattarai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Julián Pardo
- IIS Aragon Foundation/ Dpt. Microbiology, Radiology Pediatry and Public Health, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERinfec), Zaragoza, Spain
| | - Toni Celià-Terrassa
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Rovira
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Congcong Zhang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Clara Montagut
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Joan Albanell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Marc Güell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
| | - Miguel López-Botet
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
Shin SK, Mishima Y, Lee Y, Kwon OS, Kim JH, Kim YS, Kaneko S. Current Landscape of Adoptive Cell Therapy and Challenge to Develop "Off-The-Shelf" Therapy for Hepatocellular Carcinoma. J Gastroenterol Hepatol 2025; 40:791-807. [PMID: 39865534 DOI: 10.1111/jgh.16872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025]
Abstract
Adoptive cell therapy (ACT) is a type of immunotherapy in which autologous or allogeneic immune cells, such as tumor-infiltrating lymphocytes or engineered lymphocytes, are infused into patients with cancer to eliminate malignant cells. Recently, autologous T cells modified to express a chimeric antigen receptor (CAR) targeting CD19 showed a positive response in clinical studies for hematologic malignancies and have begun to be used in clinical practice. This article discusses the current status and promise of ACT research in hepatocellular carcinoma (HCC), focusing on challenges in off-the-shelf ACT using primary cells or induced pluripotent stem cells (iPSCs) with or without genetic engineering. Early clinical trials of autologous GPC-3-, MUC1-, or CEA-targeted CAR-T cell therapies are underway for HCC. There is a growing demand for the development of off-the-shelf therapies due to the high cost and manufacturing issues associated with autologous CAR-T. The development of ACT from various cell sources, such as NK cells, NKT cells, macrophages, and γδ T cells without MHC restriction other than T cells has been proposed. Advances in genome editing, including HLA gene knockout to avoid GvHD, and strategies to enhance efficacy in overcoming the suppressive tumor microenvironment, are used to create universal 'off-the-shelf' CAR-T cells which can be used immediately as therapeutic products from healthy donors or iPSC-derived immune cells. Despite several limitations, cell-based immunotherapy is expected to become a key cancer treatment modality for both hematologic malignancies and solid tumors including HCC, thanks to technological advancements overcoming these challenges.
Collapse
Affiliation(s)
- Seung Kak Shin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Yuta Mishima
- Laboratory of Cancer Immunotherapy and Immunology, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoonseok Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Oh Sang Kwon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Ju Hyun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Yun Soo Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Shin Kaneko
- Laboratory of Cancer Immunotherapy and Immunology, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory of Regenerative Immunotherapy, Department of Cell Growth and Differentiation, Center for iPS Cell Research, Kyoto University, Kyoto, Sakyo-ku, Japan
- Shinobi Therapeutics Co Ltd, Kyoto, Sakyo-ku, Japan
| |
Collapse
|
7
|
Marr B, Jo D, Jang M, Lee SH. Cytokines in Focus: IL-2 and IL-15 in NK Adoptive Cell Cancer Immunotherapy. Immune Netw 2025; 25:e17. [PMID: 40342841 PMCID: PMC12056295 DOI: 10.4110/in.2025.25.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 05/11/2025] Open
Abstract
NK cell adoptive cell therapy (ACT) has emerged as a promising strategy for cancer immunotherapy, offering advantages in scalability, accessibility, efficacy, and safety. Ex vivo activation and expansion protocols, incorporating feeder cells and cytokine cocktails, have enabled the production of highly functional NK cells in clinically relevant quantities. Advances in NK cell engineering, including CRISPR-mediated gene editing and chimeric Ag receptor technologies, have further enhanced cytotoxicity, persistence, and tumor targeting. Cytokine support post-adoptive transfer, particularly with IL-2 and IL-15, remains critical for promoting NK cell survival, proliferation, and anti-tumor activity despite persistent challenges such as regulatory T cell expansion and cytokine-related toxicities. This review explores the evolving roles of IL-2 and IL-15 in NK cell-based ACT, evaluating their potential and limitations, and highlights strategies to optimize these cytokines for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Bryan Marr
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Donghyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, Faculty of Medicine and Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Ren S, Zhang Y, Wang X, Su J, Wang X, Yuan Z, He X, Guo S, Chen Y, Deng S, Wu X, Li M, Du F, Zhao Y, Shen J, Hu W, Li X, Xiao Z. Emerging insights into the gut microbiota as a key regulator of immunity and response to immunotherapy in hepatocellular carcinoma. Front Immunol 2025; 16:1526967. [PMID: 40070843 PMCID: PMC11893557 DOI: 10.3389/fimmu.2025.1526967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
The gut microbiota, a complex microbial ecosystem closely connected to the liver via the portal vein, has emerged as a critical regulator of liver health and disease. Numerous studies have underscored its role in the onset and progression of liver disorders, including alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). This review provides a comprehensive overview of current insights into the influence of the gut microbiota on HCC progression, particularly its effects on immune cells within the HCC tumor microenvironment (TME). Furthermore, we explore the potential of gut microbiota-targeted interventions, such as antibiotics, probiotics, prebiotics, and fecal microbiota transplantation (FMT), to modulate the immune response and improve outcomes of immunotherapy in HCC. By synthesizing insights from recent studies, this review aims to highlight microbiota-based strategies that may enhance immunotherapy outcomes, advancing personalized approaches in HCC treatment.
Collapse
Affiliation(s)
- Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sipeng Guo
- Research and Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Research and Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
| |
Collapse
|
9
|
Park SJ, Shin K, Kim IH, Lee M, Hong TH, Kim H. Exploring the efficacy of fluorouracil and platinum based chemotherapy in advanced hepatocellular carcinoma to bridge the treatment gap in resource limited settings. Sci Rep 2025; 15:3386. [PMID: 39870720 PMCID: PMC11772854 DOI: 10.1038/s41598-025-86523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Advanced hepatocellular carcinoma (HCC) poses treatment challenges, especially where access to multi-kinase inhibitors and ICIs is limited by high costs and lack of insurance. This study evaluates the effectiveness of 5-fluorouracil (5-FU) plus platinum-based chemotherapy as an alternative systemic treatment for advanced HCC. A retrospective analysis of advanced HCC patients treated with 5-FU plus platinum-based chemotherapy was conducted. The Kaplan-Meier method determined median progression-free survival (PFS) and overall survival (OS). From April 2009 to October 2023, 48 patients with advanced HCC were included in the study. Nearly all patients (97.9%) had extrahepatic metastasis and stable liver function, with three-quarters previously treated with sorafenib. At a median follow-up of 7.8 months, the median PFS was 4.2 months (95% CI, 1.3-7.1), and the median OS was 8.2 months (95% CI, 2.5-13.9). A high pretreatment neutrophil-to-lymphocyte ratio (≥ 3.0) adversely affected both PFS (HR = 1.79; 95% CI, 0.99-3.25; p = 0.034) and OS (HR = 2.02; 95% CI, 1.10-3.69; p = 0.011). Hematologic toxicities related to the treatment were substantial, with 62.5% of patients experiencing grade 3 or 4 events, primarily neutropenia, which affected 60.4% of them. Our findings suggest that 5-FU combined with platinum-based chemotherapy is a viable, cost-effective alternative for advanced HCC treatment in resource-limited settings, particularly compared to ICIs and multi-kinase inhibitors, with significant implications for developing countries.
Collapse
Affiliation(s)
- Se Jun Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Secho-gu, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Secho-gu, Seoul, Korea
| | - Kabsoo Shin
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Secho-gu, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Secho-gu, Seoul, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Secho-gu, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Secho-gu, Seoul, Korea
| | - MyungAh Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Secho-gu, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Secho-gu, Seoul, Korea
| | - Tae Ho Hong
- Department of General Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Secho-gu, Seoul, Korea
| | - Hyunho Kim
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, 16247, Korea.
| |
Collapse
|
10
|
Wang X, Yang T, Shi X. NK cell-based immunotherapy in hepatocellular carcinoma: An attractive therapeutic option for the next decade. Cell Signal 2024; 124:111405. [PMID: 39260532 DOI: 10.1016/j.cellsig.2024.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Hepatocellular carcinoma (HCC), a major subtype of liver cancer, poses significant therapeutic challenges due to its late diagnosis and rapid progression. The evolving landscape of immunotherapy offers a beacon of hope, with natural killer (NK) cells emerging as pivotal players in combating HCC. NK cells are unique cytotoxic lymphocytes that are essential in the fight against infections and malignancies. Phenotypic and functional NK cell abnormalities have been shown in HCC patients, indicating their significance as a component of the innate immune system against cancer. This review elucidates the critical role of NK cells in combating HCC, focusing on their interaction with the tumor microenvironment, the development of NK cell-based therapies, and the innovative strategies to enhance their efficacy in the immunosuppressive milieu of HCC. The review delves into the various therapeutic strategies, including autologous and allogeneic NK cell therapies, genetic engineering to improve NK cell resilience and targeting, and the integration of NK cells with other immunotherapeutic approaches like checkpoint inhibitors and oncolytic virotherapy. By highlighting recent advancements and the ongoing challenges in the field, this review sets the stage for future research directions that could unlock the full potential of NK cell-based immunotherapy for HCC, offering a beacon of hope for patients battling this formidable cancer.
Collapse
Affiliation(s)
- Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Tianye Yang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Xiaoli Shi
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province 210029, China; Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
11
|
Shi Y, Hao D, Qian H, Tao Z. Natural killer cell-based cancer immunotherapy: from basics to clinical trials. Exp Hematol Oncol 2024; 13:101. [PMID: 39415291 PMCID: PMC11484118 DOI: 10.1186/s40164-024-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
Cellular immunotherapy exploits the capacity of the human immune system in self-protection and surveillance to achieve the anti-tumor effects. Natural killer (NK) cells are lymphocytes of innate immune system and they display a unique inherent ability to identify and eliminate tumor cells. In this review, we first introduce the basic characteristics of NK cells in the physiological and pathological milieus, followed by a discussion of their effector function and immunosuppression in the tumor microenvironment. Clinical strategies and reports regarding NK cellular therapy are analyzed in the context of tumor treatment, especially against solid tumors. Given the widely studied T-cell therapy in the recent years, particularly the chimeric antigen receptor (CAR) T-cell therapy, we compare the technical features of NK- and T-cell based tumor therapies at the clinical front. Finally, the technical challenges and potential solutions for both T and NK cell-based immunotherapies in treating tumor malignancies are delineated. By overviewing its clinical applications, we envision the NK-cell based immunotherapy as an up-and-comer in cancer therapeutics.
Collapse
Affiliation(s)
- Yinghong Shi
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Donglin Hao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Zhimin Tao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Emergency Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
12
|
Park H, Kim G, Kim N, Ha S, Yim H. Efficacy and safety of natural killer cell therapy in patients with solid tumors: a systematic review and meta-analysis. Front Immunol 2024; 15:1454427. [PMID: 39478866 PMCID: PMC11522797 DOI: 10.3389/fimmu.2024.1454427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction In 2020, global cancer statistics reported 19.3 million new cases and 10 million deaths annually, highlighting the urgent need for effective treatments. Current therapies, such as surgery, radiation, and chemotherapy, have limitations in comprehensively addressing solid tumor. Recent advances in cancer biology and immuno-oncology, including CAR-T cell therapy, show promise but face efficacy challenges against solid tumors. Methods This meta-analysis systematically reviewed studies from PubMed, Embase, Cochrane, and ClinicalTrials.gov databases up to May 2024 to evaluate the clinical efficacy and safety of unmodified NK cell therapies in solid tumors. The included trials focused on reporting objective response rates (ORR). Results Thirty-one trials involving 600 patients across various cancers (e.g., NSCLC, HCC, breast, ovarian) were analyzed. NK cell therapies demonstrated promising ORRs, particularly 72.3% in hepatocellular carcinoma, often in combination with local therapies. Safety profiles were favorable, with fatigue being the most common adverse event. Discussion NK cell therapies represent a promising treatment option for solid tumors, offering a viable alternative to genetically modified cell therapies like CAR-T. Further research is needed to optimize the clinical utility of NK cell therapy and integrate it effectively into standard cancer treatment regimens. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023438410, identifier CRD42023438410.
Collapse
Affiliation(s)
- Heesook Park
- Department of Public Health, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gyurin Kim
- Department of Public Health, The Catholic University of Korea, Seoul, Republic of Korea
| | - Najin Kim
- Medical Library, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sungyoen Ha
- Department of Statistics, Sungkyunkwan University of Korea, Seoul, Republic of Korea
| | - Hyeonwoo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
13
|
Thangaraj JL, Coffey M, Lopez E, Kaufman DS. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell 2024; 31:1327-1343.e5. [PMID: 38986609 PMCID: PMC11380586 DOI: 10.1016/j.stem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-β) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-β receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-β receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-β inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-β activity. Our findings demonstrate that TGF-β signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-β.
Collapse
Affiliation(s)
- Jaya Lakshmi Thangaraj
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Coffey
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Edith Lopez
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Wang K, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming natural killer cells for cancer therapy. Mol Ther 2024; 32:2835-2855. [PMID: 38273655 PMCID: PMC11403237 DOI: 10.1016/j.ymthe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.
Collapse
Affiliation(s)
- Kexin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Lu Xiao
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jieping Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
15
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Okpoluaefe S, Ismail IS, Mohamed R, Hassan N. Adaptive natural killer cell expression in response to cytomegalovirus infection in blood and solid cancer. Heliyon 2024; 10:e32622. [PMID: 38961938 PMCID: PMC11219991 DOI: 10.1016/j.heliyon.2024.e32622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Natural Killer (NK) cells are conventionally thought to be an indefinite part of innate immunity. However, in a specific subset of NK cells, recent data signify an extension of their "duties" in immune surveillance and response, having characteristics of adaptive immunity, in terms of persistence and cytotoxicity. These cells are known as the adaptive or memory-like NK cells, where human cytomegalovirus (HCMV) infection has been shown to drive the expansion of adaptive NKG2C+ NK cells. HCMV is a ubiquitous pathogen whose prevalence differs worldwide with respect to the socioeconomic status of countries. The adaptive NK cell subpopulation is often characterized by the upregulated expression of NKG2C, CD16, and CD2, and restricted expression of NKG2A, FCεRγ and killer immunoglobulin-like receptors (KIR), although these phenotypes may differ in different disease groups. The reconfiguration of these receptor distributions has been linked to epigenetic factors. Hence, this review attempts to appraise literature reporting markers associated with adaptive or memory-like NK cells post-HCMV infection, in relation to solid cancers and hematological malignancies. Adaptive NK cells, isolated and subjected to ex vivo modifications, have the potential to enhance anti-tumor response which can be a promising strategy for adoptive immunotherapy.
Collapse
Affiliation(s)
- Suruthimitra Okpoluaefe
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Emerging Infectious Disease Group, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 3200 Bertam, Kepala Batas, Penang, Malaysia
| | - Ida Shazrina Ismail
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Rafeezul Mohamed
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Norfarazieda Hassan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Emerging Infectious Disease Group, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 3200 Bertam, Kepala Batas, Penang, Malaysia
| |
Collapse
|
17
|
Vo MC, Jung SH, Nguyen VT, Tran VDH, Ruzimurodov N, Kim SK, Nguyen XH, Kim M, Song GY, Ahn SY, Ahn JS, Yang DH, Kim HJ, Lee JJ. Exploring cellular immunotherapy platforms in multiple myeloma. Heliyon 2024; 10:e27892. [PMID: 38524535 PMCID: PMC10957441 DOI: 10.1016/j.heliyon.2024.e27892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Despite major advances in therapeutic platforms, most patients with multiple myeloma (MM) eventually relapse and succumb to the disease. Among the novel therapeutic options developed over the past decade, genetically engineered T cells have a great deal of potential. Cellular immunotherapies, including chimeric antigen receptor (CAR) T cells, are rapidly becoming an effective therapeutic modality for MM. Marrow-infiltrating lymphocytes (MILs) derived from the bone marrow of patients with MM are a novel source of T cells for adoptive T-cell therapy, which robustly and specifically target myeloma cells. In this review, we examine the recent innovations in cellular immunotherapies, including the use of dendritic cells, and cellular tools based on MILs, natural killer (NK) cells, and CAR T cells, which hold promise for improving the efficacy and/or reducing the toxicity of treatment in patients with MM.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Institute of Research and Development, Duy Tan University, Danang, Viet Nam
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Tan Nguyen
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Dinh-Huan Tran
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Nodirjon Ruzimurodov
- Institute of Immunology and Human Genomics of the Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Sang Ki Kim
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-eup, Yesan-gun, Chungnam, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Mihee Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Ga-Young Song
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
18
|
Lim Y, Park J, Lim JE, Park M, Koh SK, Lee M, Kim SK, Lee SH, Song KH, Park DG, Kim HY, Jeong BC, Cho D. Evaluating a combination treatment of NK cells and reovirus against bladder cancer cells using an in vitro assay to simulate intravesical therapy. Sci Rep 2024; 14:7390. [PMID: 38548803 PMCID: PMC10979019 DOI: 10.1038/s41598-024-56297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
Intravesical treatment using either reovirus or natural killer (NK) cells serves as an efficient strategy for the treatment of bladder cancer cells (BCCs); however, corresponding monotherapies have often shown modest cytotoxicity. The potential of a locoregional combination using high-dose reovirus and NK cell therapy in an intravesical approach has not yet been studied. In this study, we evaluated the effectiveness of reoviruses and expanded NK cells (eNK) as potential strategies for the treatment of bladder cancer. The anti-tumor effects of mono-treatment with reovirus type 3 Dearing strain (RC402 and RP116) and in combination with interleukin (IL)-18/-21-pretreated eNK cells were investigated on BCC lines (5637, HT-1376, and 253J-BV) using intravesical therapy to simulate in vitro model. RP116 and IL-18/-21-pretreated eNK cells exhibited effective cytotoxicity against grade 1 carcinoma (5637 cells) when used alone, but not against HT-1376 (grade 2 carcinoma) and 253J-BV cells (derived from a metastatic site). Notably, combining RP116 with IL-18/-21-pretreated eNK cells displayed effective cytotoxicity against both HT-1376 and 253J-BV cells. Our findings underscore the potential of a combination therapy using reoviruses and NK cells as a promising strategy for treating bladder cancer.
Collapse
Affiliation(s)
- Yuree Lim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Jeehun Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Joung Eun Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Minji Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Seung Kwon Koh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Mijeong Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Sang-Ki Kim
- Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Dong Guk Park
- ViroCure Inc., Seoul, Republic of Korea
- Department of Surgery, School of Medicine, Dankook University, Cheonan, South Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Byong Chang Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Duck Cho
- Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
19
|
Arshad J, Rao A, Repp ML, Rao R, Wu C, Merchant JL. Myeloid-Derived Suppressor Cells: Therapeutic Target for Gastrointestinal Cancers. Int J Mol Sci 2024; 25:2985. [PMID: 38474232 PMCID: PMC10931832 DOI: 10.3390/ijms25052985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Gastrointestinal cancers represent one of the more challenging cancers to treat. Current strategies to cure and control gastrointestinal (GI) cancers like surgery, radiation, chemotherapy, and immunotherapy have met with limited success, and research has turned towards further characterizing the tumor microenvironment to develop novel therapeutics. Myeloid-derived suppressor cells (MDSCs) have emerged as crucial drivers of pathogenesis and progression within the tumor microenvironment in GI malignancies. Many MDSCs clinical targets have been defined in preclinical models, that potentially play an integral role in blocking recruitment and expansion, promoting MDSC differentiation into mature myeloid cells, depleting existing MDSCs, altering MDSC metabolic pathways, and directly inhibiting MDSC function. This review article analyzes the role of MDSCs in GI cancers as viable therapeutic targets for gastrointestinal malignancies and reviews the existing clinical trial landscape of recently completed and ongoing clinical studies testing novel therapeutics in GI cancers.
Collapse
Affiliation(s)
- Junaid Arshad
- University of Arizona Cancer Center, GI Medical Oncology, Tucson, AZ 85724, USA;
| | - Amith Rao
- Banner University Medical Center—University of Arizona, Tucson, AZ 85719, USA; (A.R.)
| | - Matthew L. Repp
- College of Medicine, University of Arizona, Tucson, AZ 85719, USA;
| | - Rohit Rao
- University Hospitals Cleveland Medical Center, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA;
| | - Clinton Wu
- Banner University Medical Center—University of Arizona, Tucson, AZ 85719, USA; (A.R.)
| | - Juanita L. Merchant
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
20
|
Pan D, Liu HN, Qu PF, Ma X, Ma LY, Chen XX, Wang YQ, Qin XB, Han ZX. Progress in the treatment of advanced hepatocellular carcinoma with immune combination therapy. World J Gastrointest Oncol 2024; 16:273-286. [PMID: 38425407 PMCID: PMC10900147 DOI: 10.4251/wjgo.v16.i2.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is a severe malignancy that poses a serious threat to human health. Owing to challenges in early diagnosis, most patients lose the opportunity for radical treatment when diagnosed. Nonetheless, recent advancements in cancer immunotherapy provide new directions for the treatment of HCC. For instance, monoclonal antibodies against immune checkpoint inhibitors (ICIs) such as programmed cell death protein 1/death ligand-1 inhibitors and cytotoxic t-lymphocyte associated antigen-4 significantly improved the prognosis of patients with HCC. However, tumor cells can evade the immune system through various mechanisms. With the rapid development of genetic engineering and molecular biology, various new immunotherapies have been used to treat HCC, including ICIs, chimeric antigen receptor T cells, engineered cytokines, and certain cancer vaccines. This review summarizes the current status, research progress, and future directions of different immunotherapy strategies in the treatment of HCC.
Collapse
Affiliation(s)
- Di Pan
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Hao-Nan Liu
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Peng-Fei Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xiao Ma
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Lu-Yao Ma
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xiao-Xiao Chen
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Yu-Qin Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xiao-Bing Qin
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Zheng-Xiang Han
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
21
|
Wang X, Yuan Z, Li Z, He X, Zhang Y, Wang X, Su J, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Yi T, Xiao Z. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Front Immunol 2024; 15:1354313. [PMID: 38426090 PMCID: PMC10902128 DOI: 10.3389/fimmu.2024.1354313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhengbo Li
- Department of Laboratory Medicine, The Longmatan District People’s Hospital, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Su Y, Lu Y, An H, Liu J, Ye F, Shen J, Ni Z, Huang B, Lin J. MicroRNA-204-5p Inhibits Hepatocellular Carcinoma by Targeting the Regulator of G Protein Signaling 20. ACS Pharmacol Transl Sci 2023; 6:1817-1828. [PMID: 38093845 PMCID: PMC10714421 DOI: 10.1021/acsptsci.3c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 03/14/2024]
Abstract
Although the oncogenic roles of regulator of G protein signaling 20 (RGS20) and its upstream microRNAs (miRNAs) have been reported, their involvement in hepatocellular carcinoma (HCC) remains unexplored. We utilized the starBase, miRDB, TargetScan, and mirDIP databases, along with a dual-luciferase reporter assay and cDNA chip analysis to identify miRNAs targeting RGS20. miR-204-5p was selected for further experiments to confirm its direct targeting and downregulation of the RGS20 expression. To study the miR-204-5p/RGS20 axis in HCC, RGS20 and miR-204-5p were increased in PLC/PRF/5/Hep3B cells, and the viability, hyperplasia, apoptosis, cell cycle, and invasion/migration of the cells were assessed. RGS20 exhibited optimism, while miR-204-5p exhibited pessimism in tumors. miR-204-5p directly targeted RGS20 and downregulated its expression, whereas high RGS20 expression indicated a poor prognosis. Transfection of miR-204-5p inhibited the hyperplasia, migration, and invasion of HCC cells, but promoted apoptosis and influenced the levels of cyclin-dependent kinase 2 (CDK2), cyclin E1, B-cell lymphoma-2 (Bcl-2), Bax, and cleaved caspase-3/8. These effects were reversed by overexpression of RGS20. We recognized miR-204-5p as an upstream regulator targeting RGS20, thereby inhibiting HCC progression by downregulating RGS20 expression. RGS20 may prove to be a potential target for HCC treatment, and miR-204-5p might seem like to be a potential miRNA in gene therapy.
Collapse
Affiliation(s)
- Yanqing Su
- Department
of Pharmacy, Xiamen Children’s Hospital, Xiamen, Fujian 361006, China
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Yao Lu
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
- Hebei
Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, China
| | - Honglin An
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Jinhong Liu
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
- Fujian
Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key
Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Feimin Ye
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Jiayu Shen
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Zhuona Ni
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Bin Huang
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
- Fujian
Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key
Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jiumao Lin
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
- Fujian
Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key
Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
23
|
Vu SH, Pham HH, Pham TTP, Le TT, Vo MC, Jung SH, Lee JJ, Nguyen XH. Adoptive NK Cell Therapy - a Beacon of Hope in Multiple Myeloma Treatment. Front Oncol 2023; 13:1275076. [PMID: 38023191 PMCID: PMC10656693 DOI: 10.3389/fonc.2023.1275076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Major advances in the treatment of multiple myeloma (MM) have been achieved by effective new agents such as proteasome inhibitors, immunomodulatory drugs, or monoclonal antibodies. Despite significant progress, MM remains still incurable and, recently, cellular immunotherapy has emerged as a promising treatment for relapsed/refractory MM. The emergence of chimeric antigen receptor (CAR) technology has transformed immunotherapy by enhancing the antitumor functions of T cells and natural killer (NK) cells, leading to effective control of hematologic malignancies. Recent advancements in gene delivery to NK cells have paved the way for the clinical application of CAR-NK cell therapy. CAR-NK cell therapy strategies have demonstrated safety, tolerability, and substantial efficacy in treating B cell malignancies in various clinical settings. However, their effectiveness in eliminating MM remains to be established. This review explores multiple approaches to enhance NK cell cytotoxicity, persistence, expansion, and manufacturing processes, and highlights the challenges and opportunities associated with CAR-NK cell therapy against MM. By shedding light on these aspects, this review aims to provide valuable insights into the potential of CAR-NK cell therapy as a promising approach for improving the treatment outcomes of MM patients.
Collapse
Affiliation(s)
- Son Hai Vu
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Ha Hong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thao Thi Phuong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thanh Thien Le
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| |
Collapse
|
24
|
Kim J, Phan MTT, Hwang I, Park J, Cho D. Comparison of the different anti-CD16 antibody clones in the activation and expansion of peripheral blood NK cells. Sci Rep 2023; 13:9493. [PMID: 37302991 DOI: 10.1038/s41598-023-36200-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Natural killer (NK) cells are promising tool for cancer treatment. Methods have been developed for large-scale NK cell expansion, including feeder cell-based methods or methods involving stimulation with NK cell activating signals, such as anti-CD16 antibodies. Different clones of anti-CD16 antibodies are available; however, a comprehensive comparison of their differential effects on inducing NK cell activation and expansion has not been conducted among these various clones under the same experimental conditions. Herein, we found that the NK cell expansion rate differed depending on the various anti-CD16 antibodies (CB16, 3G8, B73.1, and MEM-154) coated on microbeads when stimulated with genetically engineered feeder cells, K562‑membrane-bound IL‑18, and mbIL‑21 (K562‑mbIL‑18/-21). Only the CB16 clone combination caused enhanced NK cell expansion over K562‑mbIL‑18/-21 stimulation alone with similar NK cell functionality. Treatment with the CB16 clone once on the initial day of NK cell expansion was sufficient to maximize the combination effect. Overall, we developed a more enhanced NK expansion system by merging a feeder to effectively stimulate CD16 with the CB16 clone.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Minh-Trang Thi Phan
- Falcuty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | | | - Jeehun Park
- Soft Foundry Institute, Seoul National University, Seoul, Korea.
| | - Duck Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
25
|
Yang M, Vanderwert E, Kimchi ET, Staveley-O’Carroll KF, Li G. The Important Roles of Natural Killer Cells in Liver Fibrosis. Biomedicines 2023; 11:1391. [PMID: 37239062 PMCID: PMC10216436 DOI: 10.3390/biomedicines11051391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis accompanies the development of various chronic liver diseases and promotes their progression. It is characterized by the abnormal accumulation of extracellular matrix proteins (ECM) and impaired ECM degradation. Activated hepatic stellate cells (HSCs) are the major cellular source of ECM-producing myofibroblasts. If liver fibrosis is uncontrolled, it may lead to cirrhosis and even liver cancer, primarily hepatocellular carcinoma (HCC). Natural killer (NK) cells are a key component of innate immunity and have miscellaneous roles in liver health and disease. Accumulating evidence shows that NK cells play dual roles in the development and progression of liver fibrosis, including profibrotic and anti-fibrotic functions. Regulating NK cells can suppress the activation of HSCs and improve their cytotoxicity against activated HSCs or myofibroblasts to reverse liver fibrosis. Cells such as regulatory T cells (Tregs) and molecules such as prostaglandin E receptor 3 (EP3) can regulate the cytotoxic function of NK cells. In addition, treatments such as alcohol dehydrogenase 3 (ADH3) inhibitors, microRNAs, natural killer group 2, member D (NKG2D) activators, and natural products can enhance NK cell function to inhibit liver fibrosis. In this review, we summarized the cellular and molecular factors that affect the interaction of NK cells with HSCs, as well as the treatments that regulate NK cell function against liver fibrosis. Despite a lot of information about NK cells and their interaction with HSCs, our current knowledge is still insufficient to explain the complex crosstalk between these cells and hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, B cells, and T cells, as well as thrombocytes, regarding the development and progression of liver fibrosis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Ethan Vanderwert
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| |
Collapse
|
26
|
Kilgour MK, Bastin DJ, Lee SH, Ardolino M, McComb S, Visram A. Advancements in CAR-NK therapy: lessons to be learned from CAR-T therapy. Front Immunol 2023; 14:1166038. [PMID: 37205115 PMCID: PMC10187144 DOI: 10.3389/fimmu.2023.1166038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Advancements in chimeric antigen receptor engineered T-cell (CAR-T) therapy have revolutionized treatment for several cancer types over the past decade. Despite this success, obstacles including the high price tag, manufacturing complexity, and treatment-associated toxicities have limited the broad application of this therapy. Chimeric antigen receptor engineered natural killer cell (CAR-NK) therapy offers a potential opportunity for a simpler and more affordable "off-the-shelf" treatment, likely with fewer toxicities. Unlike CAR-T, CAR-NK therapies are still in early development, with few clinical trials yet reported. Given the challenges experienced through the development of CAR-T therapies, this review explores what lessons we can apply to build better CAR-NK therapies. In particular, we explore the importance of optimizing the immunochemical properties of the CAR construct, understanding factors leading to cell product persistence, enhancing trafficking of transferred cells to the tumor, ensuring the metabolic fitness of the transferred product, and strategies to avoid tumor escape through antigen loss. We also review trogocytosis, an important emerging challenge that likely equally applies to CAR-T and CAR-NK cells. Finally, we discuss how these limitations are already being addressed in CAR-NK therapies, and what future directions may be possible.
Collapse
Affiliation(s)
- Marisa K. Kilgour
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Scott McComb
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Canada
| | - Alissa Visram
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
27
|
Lizana-Vasquez GD, Torres-Lugo M, Dixon R, Powderly JD, Warin RF. The application of autologous cancer immunotherapies in the age of memory-NK cells. Front Immunol 2023; 14:1167666. [PMID: 37205105 PMCID: PMC10185894 DOI: 10.3389/fimmu.2023.1167666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cellular immunotherapy has revolutionized the oncology field, yielding improved results against hematological and solid malignancies. NK cells have become an attractive alternative due to their capacity to activate upon recognition of "stress" or "danger" signals independently of Major Histocompatibility Complex (MHC) engagement, thus making tumor cells a perfect target for NK cell-mediated cancer immunotherapy even as an allogeneic solution. While this allogeneic use is currently favored, the existence of a characterized memory function for NK cells ("memory-like" NK cells) advocates for an autologous approach, that would benefit from the allogeneic setting discoveries, but with added persistence and specificity. Still, both approaches struggle to exert a sustained and high anticancer effect in-vivo due to the immunosuppressive tumor micro-environment and the logistical challenges of cGMP production or clinical deployment. Novel approaches focused on the quality enhancement and the consistent large-scale production of highly activated therapeutic memory-like NK cells have yielded encouraging but still unconclusive results. This review provides an overview of NK biology as it relates to cancer immunotherapy and the challenge presented by solid tumors for therapeutic NKs. After contrasting the autologous and allogeneic NK approaches for solid cancer immunotherapy, this work will present the current scientific focus for the production of highly persistent and cytotoxic memory-like NK cells as well as the current issues with production methods as they apply to stress-sensitive immune cells. In conclusion, autologous NK cells for cancer immunotherapy appears to be a prime alternative for front line therapeutics but to be successful, it will be critical to establish comprehensives infrastructures allowing the production of extremely potent NK cells while constraining costs of production.
Collapse
Affiliation(s)
- Gaby D. Lizana-Vasquez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - R. Brent Dixon
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - John D. Powderly
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - Renaud F. Warin
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| |
Collapse
|
28
|
Ruff SM, Shannon AH, Pawlik TM. Advances in Targeted Immunotherapy for Hepatobiliary Cancers. Int J Mol Sci 2022; 23:13961. [PMID: 36430440 PMCID: PMC9698563 DOI: 10.3390/ijms232213961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer of the hepatobiliary system can be divided into primary liver cancer and biliary tract cancer (BTC), which includes hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and gallbladder cancer (GBC). These aggressive cancers often present at an advanced stage or among patients with poorly preserved liver function. The primary treatment for HCC and BTC when diagnosed early is surgical resection, but given the high rate of recurrence and often advanced stage at diagnosis, many patients will require systemic therapy. Unfortunately, even with systemic therapy, long-term survival is poor. The immune system plays an important role in preventing cancer progression. The unique immune environment of the liver and subsequent alterations to the immune microenvironment by tumor cells to create a favorable microenvironment plays a key role in the progression of HCC and BTC. Due to the paucity of effective systemic therapies and distinctive immune environment of the liver, research and clinical trials are investigating the use of immunotherapy in HCC and BTC. This review will focus on current immunotherapies and emerging data for the treatment of HCC and BTC.
Collapse
Affiliation(s)
| | | | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, Wexner Medical Center, The James Comprehensive Cancer Center, The Ohio State University, 395 W. 12th Ave., Suite 670, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Ruff SM, Shannon AH, Beane JD, Pawlik TM. Highlighting novel targets in immunotherapy for liver cancer. Expert Rev Gastroenterol Hepatol 2022; 16:1029-1041. [PMID: 36404729 DOI: 10.1080/17474124.2022.2150841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alterations to the hepatic immune microenvironment can play a key role in the development and progression of cancer. This is especially true in the liver due to its evolutionarily conserved immunotolerant state. The presence of chronic inflammation can facilitate the development and progression of hepatocellular carcinoma (HCC) by disrupting the hepatic immune microenvironment. Recently, the addition of the immunotherapy atezolizumab (PD-L1 inhibitor) with bevacizumab (VEGF inhibitor) became the recommended first-line systemic treatment for advanced HCC. AREAS COVERED Given recent updates to the guidelines and emerging data on immunotherapy, we herein provide an overview of currently available and novel immunotherapy approaches for the treatment of HCC, including immune checkpoint inhibitors, adoptive cell therapy, and vaccine development. This review performed an extensive literature search to investigate benchwork, clinical research, and clinical trials that evaluate current immunotherapy and establish new targets. Literature was focused on the most up-to-date research and included ongoing clinical trials to better evaluate the obstacles and future direction of the field. EXPERT OPINION Given the heterogeneity of HCC tumors, improvement in outcomes will likely come from targeting multiple immune mechanisms. Continued research and clinical trials of combination immunotherapies are necessary to move the field forward.
Collapse
Affiliation(s)
- Samantha M Ruff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Alexander H Shannon
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joal D Beane
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
30
|
Feng H, Zhuo Y, Zhang X, Li Y, Li Y, Duan X, Shi J, Xu C, Gao Y, Yu Z. Tumor Microenvironment in Hepatocellular Carcinoma: Key Players for Immunotherapy. J Hepatocell Carcinoma 2022; 9:1109-1125. [PMID: 36320666 PMCID: PMC9618253 DOI: 10.2147/jhc.s381764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a serious medical therapeutic challenge as conventional curative avenues such as surgery and chemotherapy only benefit for few patients with limited tumor burden. Immunotherapy achieves clinical progress in the treatment of this prevalent malignant disease by virtue of the development of tumor immunology; however, most patients have experienced minimal or no clinical benefit in terms of overall survival. The complexity and diversity of tumor microenvironment (TME) built by immune and stromal cell subsets has been considered to be responsible for the insufficiency of immunotherapy. The advance of bioanalytical technology boosts the exploration of the composition and differentiation of these infiltrated cells, which reflect the immune state of the TME and impact the efficacy of the antitumor immune response. Targeting these cells to remodel the TME is one of the important immunotherapeutic approaches to improve HCC treatment. In this review, we focused on the role of these non-cancerous cells in the tumor progression, and elaborated their function on cancer immunotherapy when manipulating them as potential targets.
Collapse
Affiliation(s)
- Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yunhui Zhuo
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yuyao Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yue Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiangjuan Duan
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia Shi
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chengbin Xu
- Department of Informatics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yueqiu Gao
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Correspondence: Yueqiu Gao, Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China, Tel +86 21 20256507, Fax +86 21 20256699, Email
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Zhuo Yu, Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China, Tel +86 21 20256507, Fax +86 21 20256699, Email
| |
Collapse
|