1
|
Zhang H, Yang X, Xue Y, Huang Y, Mo Y, Huang Y, Zhang H, Zhang X, Zhao W, Jia B, Li N, Gao N, Yang Y, Xiang D, Wang S, Qin Gao Y, Liao J. A basigin antibody modulates MCTs to impact tumor metabolism and immunity. Cell Discov 2025; 11:44. [PMID: 40324980 PMCID: PMC12053622 DOI: 10.1038/s41421-025-00777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/20/2025] [Indexed: 05/07/2025] Open
Abstract
Lactate metabolism and signaling intricately intertwine in the context of cancer and immunity. Basigin, working alongside monocarboxylate transporters MCT1 and MCT4, orchestrates the movement of lactate across cell membranes. Despite their potential in treating formidable tumors, the mechanisms by which basigin antibodies affect basigin and MCTs remain unclear. Our research demonstrated that basigin positively modulates MCT activity. We subsequently developed a basigin antibody that converts basigin into a negative modulator, thereby suppressing lactate transport and enhancing anti-tumor immunity. Additionally, the antibody alters metabolic profiles in NSCLC-PDOs and T cells. Cryo-EM structural analysis and molecular dynamics simulations reveal that the extracellular Ig2 domain and transmembrane domain of basigin regulate MCT1 activity through an allosteric mechanism. The antibody decreases MCT1 transition rate by reducing the flexibility of basigin's Ig2 domain and diminishing interactions between basigin's transmembrane domain and MCT1. These findings underscore the promise of basigin antibodies in combating tumors by modulating metabolism and immunity, and the value of a common therapeutic subunit shared by multiple transporter targets.
Collapse
Affiliation(s)
- Heng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuemei Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yingxi Mo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yurun Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaofei Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixin Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Jia
- Lung Cancer Department, Tianjin Cancer Hospital, Tianjin, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yue Yang
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, and Department of Biliary-Pancreatic Surgery, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Shan Wang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Jun Liao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Alphelix Biosciences, Foshan, Guangdong, China.
| |
Collapse
|
2
|
Tognetti M, Chatterjee L, Beaton N, Sklodowski K, Bruderer R, Reiter L, Messner CB. Serum proteomics reveals survival-associated biomarkers in pancreatic cancer patients treated with chemoimmunotherapy. iScience 2025; 28:112230. [PMID: 40235590 PMCID: PMC11999289 DOI: 10.1016/j.isci.2025.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/30/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment but remains largely ineffective for patients with pancreatic ductal adenocarcinoma (PDAC). Some patients, however, show improved outcomes when treated with a combination of immunotherapy and chemotherapy. Here, we conducted deep serum proteome analysis to investigate the protein profiles of PDAC patients and changes during this combinatorial treatment. Utilizing an advanced serum workflow, we quantified 1,011 proteins across 211 samples from 62 patients. Glycolytic enzymes were associated with survival in anti-PD-1-treated patients, with their abundances significantly correlating with expression levels in tumor biopsies. Notably, a set of protein biomarkers was found to be highly predictive of survival in anti-PD-1-treated patients (area under the curve [AUC] = 0.91). Overall, our data demonstrate the potential of deep serum proteomics for precision medicine, offering a powerful tool to guide patient selection for treatment through minimally invasive serum protein biomarker measurements.
Collapse
Affiliation(s)
| | - Lopamudra Chatterjee
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
- The LOOP Zurich, 8044 Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | | | | | | | | | - Christoph B. Messner
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
- The LOOP Zurich, 8044 Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Liu XS, Xie J, Wu RM, Xiao GC, Zhang Y, Pei ZJ. Expression patterns of MCM8 in lung adenocarcinoma and its correlation with key biological processes. Eur J Med Res 2025; 30:149. [PMID: 40033404 PMCID: PMC11874120 DOI: 10.1186/s40001-025-02407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is one of the most common and lethal tumors. The identification of diagnostic and prognostic biomarkers is essential to improve patient prognosis and treatment outcomes. METHODS The expression of minichromosome maintenance complex component 8 (MCM8) in 33 cancer types was analyzed using the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression. Tumor and normal tissues in LUAD were compared using TCGA data and validated against four datasets from the Gene Expression Omnibus. MCM8 expression was assessed by immunohistochemistry (IHC) using tissue microarrays. The diagnostic value of MCM8 was assessed by Receiver Operating Characteristic curve analysis, and its prognostic significance was determined by Kaplan-Meier analysis. The CIBERSORT method was used to examine immune infiltration. The association between MCM8 expression and m6A RNA methylation, glycolysis, and ferroptosis was assessed using the GEPIA online tool. RESULTS MCM8 is markedly overexpressed in many tumors including LUAD. MCM8 showed high accuracy for the diagnosis of LUAD, with an area under the curve of 0.849 in TCGA dataset. MCM8 overexpression in tumor tissues in LUAD was confirmed by IHC and shown to be associated with decreased overall survival and disease-specific survival. Analysis of immune cell infiltration showed that immune cell populations differed between high and low MCM8 expression groups. MCM8 expression correlated with that of genes associated with m6A RNA methylation, glycolysis, and ferroptosis. CONCLUSIONS MCM8 was identified as a promising diagnostic and prognostic marker in LUAD. The mechanism underlying the effect of MCM8 on cancer development and the immune response remains to be elucidated.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China.
| | - Jin Xie
- Hubei University of Traditional Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Rui-Min Wu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Gao-Chun Xiao
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu Zhang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
4
|
Montico B, Giurato G, Guerrieri R, Colizzi F, Salvati A, Nassa G, Lamberti J, Memoli D, Sabatelli P, Comelli M, Bellazzo A, Fejza A, Camicia L, Baboci L, Dal Bo M, Covre A, Nyman TA, Weisz A, Steffan A, Maio M, Sigalotti L, Mongiat M, Andreuzzi E, Fratta E. Suppression of Spry1 reduces HIF1α-dependent glycolysis and impairs angiogenesis in BRAF-mutant cutaneous melanoma. J Exp Clin Cancer Res 2025; 44:53. [PMID: 39953610 PMCID: PMC11827140 DOI: 10.1186/s13046-025-03289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND About 50% of cutaneous melanoma (CM) harbors the activating BRAFV600 mutation which exerts most of the oncogenic effects through the MAPK signaling pathway. In the last years, a number of MAPK modulators have been identified, including Spry1. In this context, we have recently demonstrated that knockout of Spry1 (Spry1KO) in BRAFV600-mutant CM led to cell cycle arrest and apoptosis, repressed cell proliferation in vitro, and reduced tumor growth in vivo. Despite these findings, however, the precise molecular mechanism linking Spry1 to BRAFV600-mutant CM remains to be elucidated. MATERIALS AND METHODS Immunoprecipitation coupled to mass spectrometry was employed to gain insight into Spry1 interactome. Spry1 gene was knocked-out using the CRISPR strategy in the BRAF-mutant cell lines. Transmission electron microscopy was used to assess the relationship between Spry1 expression and mitochondrial morphology. By using in vitro and in vivo models, the effects of Spry1KO were investigated through RNA-sequencing, quantitative real-time PCR, Western blot, and immunofluorescence analyses. The Seahorse XF24 assay allowed real-time measurement of cellular metabolism in our model. Angiogenic potential was assessed through in vitro tube formation assays and in vivo CD31 staining. RESULTS Spry1 was mainly located in mitochondria in BRAFV600-mutant CM cells where it interacted with key molecules involved in mitochondrial homeostasis. Spry1 loss resulted in mitochondrial shape alterations and dysfunction, which associated with increased reactive oxygen species production. In agreement, we found that nuclear hypoxia-inducible factor-1 alpha (HIF1α) protein levels were reduced in Spry1KO clones both in vitro and in vivo along with the expression of its glycolysis related genes. Accordingly, Ingenuity Pathway Analysis identified "HIF1α Signaling" as the most significant molecular and cellular function affected by Spry1 silencing, whereas the glycolytic function was significantly impaired in Spry1 depleted BRAFV600-mutant CM cells. In addition, our results indicated that the expression of the vascular endothelial growth factor A was down-regulated following Spry1KO, possibly as a result of mitochondrial dysfunction. Consistently, we observed a substantial impairment of angiogenesis, as assessed by the tube formation assay in vitro and the immunofluorescence staining of CD31 in vivo. CONCLUSIONS Altogether, these findings identify Spry1 as a potential regulator of mitochondrial homeostasis, and uncover a previously unrecognized role for Spry1 in regulating nuclear HIF1α expression and angiogenesis in BRAFV600-mutant CM. SIGNIFICANCE Spry1KO profoundly impacts on mitochondria homeostasis, while concomitantly impairing HIF1α-dependent glycolysis and reducing angiogenesis in BRAF-mutant CM cells, thus providing a potential therapeutic target to improve BRAFV600-mutant CM treatment.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Annamaria Salvati
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Division of Oncology, AOU 'S. Giovanni Di Dio E Ruggi 14 d'Aragona', Università Di Salerno, Molecular Pathology and Medical Genomics Program, Salerno, 84131, Italy
| | - Giovanni Nassa
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
- Division of Oncology, AOU 'S. Giovanni Di Dio E Ruggi 14 d'Aragona', Università Di Salerno, Molecular Pathology and Medical Genomics Program, Salerno, 84131, Italy
| | - Jessica Lamberti
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Arianna Bellazzo
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Albina Fejza
- Molecular Oncology Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, Italy
- UBT-Higher Education Institution, Street Rexhep Krasniqi Nr. 56, Prishtina, Kalabria, 10000, Kosovo
| | - Lucrezia Camicia
- Molecular Oncology Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, Italy
| | - Lorena Baboci
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit , Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, PN, Italy
| | | | - Tuula A Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
- Division of Oncology, AOU 'S. Giovanni Di Dio E Ruggi 14 d'Aragona', Università Di Salerno, Molecular Pathology and Medical Genomics Program, Salerno, 84131, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Molecular Oncology Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
5
|
Toledano Zur R, Atar O, Barliya T, Hoogi S, Abramovich I, Gottlieb E, Ron-Harel N, Cohen CJ. Genetically engineering glycolysis in T cells increases their antitumor function. J Immunother Cancer 2024; 12:e008434. [PMID: 38964783 PMCID: PMC11227835 DOI: 10.1136/jitc-2023-008434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND T cells play a central role in the antitumor response. However, they often face numerous hurdles in the tumor microenvironment, including the scarcity of available essential metabolites such as glucose and amino acids. Moreover, cancer cells can monopolize these resources to thrive and proliferate by upregulating metabolite transporters and maintaining a high metabolic rate, thereby outcompeting T cells. METHODS Herein, we sought to improve T-cell antitumor function in the tumor vicinity by enhancing their glycolytic capacity to better compete with tumor cells. To achieve this, we engineered human T cells to express a key glycolysis enzyme, phosphofructokinase, in conjunction with Glucose transporter 3, a glucose transporter. We co-expressed these, along with tumor-specific chimeric antigen or T-cell receptors. RESULTS Engineered cells demonstrated an increased cytokine secretion and upregulation of T-cell activation markers compared with control cells. Moreover, they displayed superior glycolytic capacity, which translated into an improved in vivo therapeutic potential in a xenograft model of human tumors. CONCLUSION In summary, these findings support the implementation of T-cell metabolic engineering to enhance the efficacy of cellular immunotherapies for cancer.
Collapse
Affiliation(s)
| | - Orna Atar
- Technion Israel Institute of Technology, Haifa, Haifa, Israel
| | | | | | - Ifat Abramovich
- Technion Israel Institute of Technology, Haifa, Haifa, Israel
| | - Eyal Gottlieb
- Technion Israel Institute of Technology, Haifa, Haifa, Israel
| | - Noga Ron-Harel
- Technion Israel Institute of Technology, Haifa, Haifa, Israel
| | - Cyrille J Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Tel Aviv, Israel
| |
Collapse
|
6
|
Dai L, Fan G, Xie T, Li L, Tang L, Chen H, Shi Y, Han X. Single-cell and spatial transcriptomics reveal a high glycolysis B cell and tumor-associated macrophages cluster correlated with poor prognosis and exhausted immune microenvironment in diffuse large B-cell lymphoma. Biomark Res 2024; 12:58. [PMID: 38840205 PMCID: PMC11155084 DOI: 10.1186/s40364-024-00605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignancy characterized by varied responses to treatment and prognoses. Understanding the metabolic characteristics driving DLBCL progression is crucial for developing personalized therapies. METHODS This study utilized multiple omics technologies including single-cell transcriptomics (n = 5), bulk transcriptomics (n = 966), spatial transcriptomics (n = 10), immunohistochemistry (n = 34), multiple immunofluorescence (n = 20) and to elucidate the metabolic features of highly malignant DLBCL cells and tumor-associated macrophages (TAMs), along with their associated tumor microenvironment. Metabolic pathway analysis facilitated by scMetabolism, and integrated analysis via hdWGCNA, identified glycolysis genes correlating with malignancy, and the prognostic value of glycolysis genes (STMN1, ENO1, PKM, and CDK1) and TAMs were verified. RESULTS High-glycolysis malignant DLBCL tissues exhibited an immunosuppressive microenvironment characterized by abundant IFN_TAMs (CD68+CXCL10+PD-L1+) and diminished CD8+ T cell infiltration. Glycolysis genes were positively correlated with malignancy degree. IFN_TAMs exhibited high glycolysis activity and closely communicating with high-malignancy DLBCL cells identified within datasets. The glycolysis score, evaluated by seven genes, emerged as an independent prognostic factor (HR = 1.796, 95% CI: 1.077-2.995, p = 0.025 and HR = 2.631, 95% CI: 1.207-5.735, p = 0.015) along with IFN_TAMs were positively correlated with poor survival (p < 0.05) in DLBCL. Immunohistochemical validation of glycolysis markers (STMN1, ENO1, PKM, and CDK1) and multiple immunofluorescence validation of IFN_TAMs underscored their prognostic value (p < 0.05) in DLBCL. CONCLUSIONS This study underscores the significance of glycolysis in tumor progression and modulation of the immune microenvironment. The identified glycolysis genes and IFN_TAMs represent potential prognostic markers and therapeutic targets in DLBCL.
Collapse
Affiliation(s)
- Liyuan Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Haizhu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
7
|
Liu XS, Chen YX, Wan HB, Wang YL, Wang YY, Gao Y, Wu LB, Pei ZJ. TRIP6 a potential diagnostic marker for colorectal cancer with glycolysis and immune infiltration association. Sci Rep 2024; 14:4042. [PMID: 38369589 PMCID: PMC10874967 DOI: 10.1038/s41598-024-54670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Thyroid hormone receptor interactor 6 (TRIP6) it is an adaptor protein belonging to the zyxin family of LIM proteins, participating in signaling events through interactions with various molecules. Despite this, TRIP6's role in colorectal cancer (CRC), particularly its correlation with glucose metabolism and immune cell infiltration, remains unclear. Through the TCGA and GEO databases, we obtained RNA sequencing data to facilitate our in-depth study and analysis of TRIP6 expression. To investigate the prognostic value of TRIP6 in CRC, we also used univariate Cox regression analysis. In addition, this study also covered a series of analyses, including clinicopathological analysis, functional enrichment analysis, glycolysis correlation analysis, immunoinfiltration analysis, immune checkpoint analysis, and angiogenesis correlation analysis, to gain a comprehensive and in-depth understanding of this biological phenomenon. It has been found that TRIP6 expression is significantly upregulated in CRC and correlates with the stage of the disease. Its overexpression portends a worse survival time. Functional enrichment analysis reveals that TRIP6 is associated with focal adhesion and glycolysis. Mechanistically, TRIP6 appears to exert its tumorigenic effect by regulating the glycolysis-related gene GPI. A higher level of expression of TRIP6 is associated with an increase in the number of iDC immune cells and a decrease in the number of Th1 immune cells. Also, TRIP6 may promote angiogenesis in tumor cells by promoting the expression of JAG2. Our study uncovers the upregulation of TRIP6 in CRC, illuminating its prognostic and diagnostic value within this context. Furthermore, we examine the relationship between TRIP6 expression levels, glycolysis, angiogenesis and immune cell infiltration. This underscores its potential as a biomarker for CRC treatment and as a therapeutic target.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Yu-Xuan Chen
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hua-Bing Wan
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ya-Lan Wang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yang-Yang Wang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yan Gao
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Li-Bing Wu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China.
| |
Collapse
|
8
|
Long Y, Shi H, He Y, Qi X. Analyzing the impact of metabolism on immune cells in tumor microenvironment to promote the development of immunotherapy. Front Immunol 2024; 14:1307228. [PMID: 38264667 PMCID: PMC10804850 DOI: 10.3389/fimmu.2023.1307228] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tumor metabolism and tumor immunity are inextricably linked. Targeting the metabolism of tumors is a point worth studying in tumor immunotherapy. Recently, the influence of the metabolism of tumors and immune cells on the occurrence, proliferation, metastasis, and prognosis of tumors has attracted more attention. Tumor tissue forms a specific tumor microenvironment (TME). In addition to tumor cells, there are also immune cells, stromal cells, and other cells in TME. To adapt to the environment, tumor cells go through the metabolism reprogramming of various substances. The metabolism reprogramming of tumor cells may further affect the formation of the tumor microenvironment and the function of a variety of cells, especially immune cells, eventually promoting tumor development. Therefore, it is necessary to study the metabolism of tumor cells and its effects on immune cells to guide tumor immunotherapy. Inhibiting tumor metabolism may restore immune balance and promote the immune response in tumors. This article will describe glucose metabolism, lipid metabolism, amino acid metabolism, and immune cells in tumors. Besides, the impact of metabolism on the immune cells in TME is also discussed for analyzing and exploring tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Giles JR, Globig AM, Kaech SM, Wherry EJ. CD8 + T cells in the cancer-immunity cycle. Immunity 2023; 56:2231-2253. [PMID: 37820583 PMCID: PMC11237652 DOI: 10.1016/j.immuni.2023.09.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Kumar V, Bauer C, Stewart JH. Cancer cell-specific cGAS/STING Signaling pathway in the era of advancing cancer cell biology. Eur J Cell Biol 2023; 102:151338. [PMID: 37423035 DOI: 10.1016/j.ejcb.2023.151338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Pattern-recognition receptors (PRRs) are critical to recognizing endogenous and exogenous threats to mount a protective proinflammatory innate immune response. PRRs may be located on the outer cell membrane, cytosol, and nucleus. The cGAS/STING signaling pathway is a cytosolic PRR system. Notably, cGAS is also present in the nucleus. The cGAS-mediated recognition of cytosolic dsDNA and its cleavage into cGAMP activates STING. Furthermore, STING activation through its downstream signaling triggers different interferon-stimulating genes (ISGs), initiating the release of type 1 interferons (IFNs) and NF-κB-mediated release of proinflammatory cytokines and molecules. Activating cGAS/STING generates type 1 IFN, which may prevent cellular transformation and cancer development, growth, and metastasis. The current article delineates the impact of the cancer cell-specific cGAS/STING signaling pathway alteration in tumors and its impact on tumor growth and metastasis. This article further discusses different approaches to specifically target cGAS/STING signaling in cancer cells to inhibit tumor growth and metastasis in conjunction with existing anticancer therapies.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA; Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| |
Collapse
|
11
|
Tonkin-Reeves A, Giuliani CM, Price JT. Inhibition of autophagy; an opportunity for the treatment of cancer resistance. Front Cell Dev Biol 2023; 11:1177440. [PMID: 37363731 PMCID: PMC10290173 DOI: 10.3389/fcell.2023.1177440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
The process of macroautophagy plays a pivotal role in the degradation of long-lived, superfluous, and damaged proteins and organelles, which are later recycled for cellular use. Normal cells rely on autophagy to combat various stressors and insults to ensure survival. However, autophagy is often upregulated in cancer cells, promoting a more aggressive phenotype that allows mutated cells to evade death after exposure to therapeutic treatments. As a result, autophagy has emerged as a significant factor in therapeutic resistance across many cancer types, with underlying mechanisms such as DNA damage, cell cycle arrest, and immune evasion. This review provides a comprehensive summary of the role of autophagy in therapeutic resistance and the limitations of available autophagic inhibitors in cancer treatment. It also highlights the urgent need to explore new inhibitors that can synergize with existing therapies to achieve better patient treatment outcomes. Advancing research in this field is crucial for developing more effective treatments that can help improve the lives of cancer patients.
Collapse
Affiliation(s)
- Asha Tonkin-Reeves
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Charlett M. Giuliani
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, Melbourne, VIC, Australia
| | - John T. Price
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|