1
|
Hawkins M, Robley B, Alem F, Narayanan A, Larson P, Hull J, Hajduk I, Wallach M. Economically Feasible Mass Production of Egg Yolk Powder Tablets (Chicken IgY) for Global COVID-19 Transmission Prevention. RESEARCH SQUARE 2025:rs.3.rs-5068132. [PMID: 40166022 PMCID: PMC11957237 DOI: 10.21203/rs.3.rs-5068132/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Despite the overall positive outcomes in hospitalization and mortality rates from the COVID-19 vaccines, COVID-19 infections remained prevalent around the world highlighting the need for alternative control strategies. Passive immunization with chicken IgY has long served as a feasible countermeasure, which gained further popularity in the research community during the recent pandemic. Here we demonstrate for the first time the scalability of anti-COVID-19 IgY production for effective distribution and potential use in large populations. Over 70,000 chickens were immunized against the SARS-CoV-2 S1 antigen to produce eggs containing anti-S1 IgY. The resulting egg yolk powder was formulated into commercially acceptable tablets for human consumption. QC and stability testing showed that the purified IgY and tablets maintained activity and stability for over a year. The resulting large batch of IgY tablets demonstrated equal immunoreactivity and virus neutralization potential against all leading COVID-19 strains. Our results demonstrate the feasibility of manufacturing egg yolk powder into edible tablets, and that can now be employed to block viral infectivity and transmission against all major COVID-19 strains affordably and effectively manner in both developed and developing countries.
Collapse
|
2
|
Mira A, Garro CJ, de Alba P, Monti D, Lang MC, Vivas A, Medina E, Franco JC, Gutierrez Á, Schnittger L, Wigdorovitz A, Parreño V, Bok M. P23-Specific IgY Significantly Reduces Diarrhea and Oocyst Shedding in Calves Experimentally Infected with Cryptosporidium parvum. Vaccines (Basel) 2025; 13:162. [PMID: 40006709 PMCID: PMC11860195 DOI: 10.3390/vaccines13020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cryptosporidium parvum is a zoonotic enteroparasite causing severe diarrhea in newborn calves, leading to significant economic losses in dairy and beef farming. This study aimed to evaluate whether C. parvum p23-specific IgY antibodies could control neonatal calf diarrhea caused by C. parvum. METHODS A recombinant immunogen comprising the p23 protein fused to the antigen-presenting cell homing (APCH) molecule was expressed using the baculovirus system. Hens were immunized with the APCH-p23 immunogen, and the resulting IgY was spray-dried for treatment use. Eight newborn calves were included in the study and received commercial colostrum within the first 12 h of life. Four calves were treated with 20 g of powdered egg containing IgY (p23-specific IgY titer of 256 in milk) twice daily for 7 days. The remaining four calves received regular non-supplemented milk. All calves were orally infected with 6 million oocysts and monitored for 21 days. RESULTS Calves treated with p23-specific IgY exhibited significantly reduced diarrhea duration (3.5 vs. 7.5 days; p = 0.0397) and oocyst shedding duration (6.50 vs. 12 days; p = 0.0089). In addition, the total number of excreted oocysts, as measured by the change of the area under the curve (AUC), was significantly reduced in the treated group (14.25 vs. 33.45; p = 0.0117). Although the onset of diarrhea was delayed (3.5 to 6.5 days post-infection; p = 0.1840), and diarrhea severity was reduced (24.25 to 17 AUC; p = 0.1236), both parameters were not statistically significant. CONCLUSIONS P23-specific IgY antibodies effectively reduced the C. parvum-induced duration of diarrhea in experimentally infected calves. These findings highlight the potential of this passive treatment as a promising strategy for controlling neonatal calf diarrhea.
Collapse
Affiliation(s)
- Anabela Mira
- Bioinnovo S.A., De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (A.M.); (M.C.L.); (A.V.); (E.M.); (J.C.F.)
| | - Carlos Javier Garro
- Instituto de Patobiología Veterinaria (IP-IPVet), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA-CONICET), De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (C.J.G.); (P.d.A.); (L.S.)
| | - Paloma de Alba
- Instituto de Patobiología Veterinaria (IP-IPVet), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA-CONICET), De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (C.J.G.); (P.d.A.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Demian Monti
- INCUINTA, CICVyA, Instituto Nacional de Tecnología Agropecuaria, De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (D.M.); (Á.G.)
| | - Maria Cecilia Lang
- Bioinnovo S.A., De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (A.M.); (M.C.L.); (A.V.); (E.M.); (J.C.F.)
| | - Alejandro Vivas
- Bioinnovo S.A., De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (A.M.); (M.C.L.); (A.V.); (E.M.); (J.C.F.)
| | - Esteban Medina
- Bioinnovo S.A., De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (A.M.); (M.C.L.); (A.V.); (E.M.); (J.C.F.)
| | - Juan Cruz Franco
- Bioinnovo S.A., De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (A.M.); (M.C.L.); (A.V.); (E.M.); (J.C.F.)
| | - Álvaro Gutierrez
- INCUINTA, CICVyA, Instituto Nacional de Tecnología Agropecuaria, De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (D.M.); (Á.G.)
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria (IP-IPVet), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA-CONICET), De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (C.J.G.); (P.d.A.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Andrés Wigdorovitz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina;
- INCUINTA, CICVyA, Instituto Nacional de Tecnología Agropecuaria, De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (D.M.); (Á.G.)
| | - Viviana Parreño
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina;
- INCUINTA, CICVyA, Instituto Nacional de Tecnología Agropecuaria, De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (D.M.); (Á.G.)
| | - Marina Bok
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina;
- INCUINTA, CICVyA, Instituto Nacional de Tecnología Agropecuaria, De Los Reseros y Nicolás Repetto S/N, Buenos Aires 1686, Argentina; (D.M.); (Á.G.)
| |
Collapse
|
3
|
Fibriani A, Naisanu K, Yamahoki N, Kinanti DR. Development of polyclonal chicken egg yolk immunoglobulin Y (IgY) antibodies targeting SARS-CoV-2 multi-epitope antigen. J Virol Methods 2025; 331:115062. [PMID: 39551444 DOI: 10.1016/j.jviromet.2024.115062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is the primary cause of the Coronavirus disease 2019 (COVID-19) pandemic, which affects millions of people worldwide with high levels of infectivity and mortality. However, the antibodies developed for COVID-19 research and diagnostics are still limited. Therefore, in this study, we developed polyclonal immunoglobulin (IgY) antibodies from chicken egg yolk targeting multi-epitope antigen of SARS-CoV-2. After immunizing hens with a SARS-CoV-2 multi-epitope peptide, IgY antibodies were isolated from chicken eggs and further characterized using SDS-PAGE and ELISA. The results showed that the IgY antibodies were successfully isolated from egg yolks. The sandwich ELISA results demonstrated that the isolated IgYs could bind to SARS-CoV-2 antigens, both the multi-epitope peptide and the trimeric Spike. Furthermore, the developed polyclonal antibodies could recognize SARS-CoV-2 in human nasopharyngeal swab samples, even at the lowest concentration (dilution at 1:10000). Thus, it can be concluded that the developed polyclonal IgYs were successfully produced and have the potential to be applied in the development of COVID-19 diagnostics.
Collapse
Affiliation(s)
- Azzania Fibriani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia.
| | - Katerina Naisanu
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Nicholas Yamahoki
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Denti Rizki Kinanti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
4
|
Ahmadi TS, Behrouz B, Mousavi Gargari SL. Polyclonal anti-whole cell IgY passive immunotherapy shields against P. aeruginosa-induced acute pneumonia and burn wound infections in murine models. Sci Rep 2024; 14:405. [PMID: 38172232 PMCID: PMC10764880 DOI: 10.1038/s41598-023-50859-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Pseudomonas aeruginosa (PA) is a multidrug-resistant (MDR) opportunistic pathogen causing severe hospital-, and community-acquired infections worldwide. Thus, the development of effective immunotherapy-based treatments is essential to combat the MDR-PA infections. In the current study, we evaluated the protective efficacy of polyclonal avian antibodies raised against inactivated whole cells of the PAO1 strain in murine models of acute pneumonia and burn wound. The efficacy of generated antibodies was evaluated against different PA strains through several in vitro, ex vivo and in vivo experiments. The results showed that the anti-PAO1-IgY effectively reduced the motility, biofilm formation and cell internalization ability, and enhanced the opsonophagocytic killing of PA strains through the formation of immobilized bacteria and induction of increased cell surface hydrophobicity. Furthermore, immunotherapy with anti-PAO1-IgY completely protected mice against all PA strains in both acute pneumonia and burn wound murine models. It was found to reduce the bacterial loads in infected burned mice through interfering with virulence factors that play vital roles in the early stages of PA infection, such as colonization and cell internalization. The immunotherapy with anti-PAO1-IgYs could be instrumental in developing effective therapies aimed at reducing the morbidity and mortality associated with PA infections.
Collapse
Affiliation(s)
- Tooba Sadat Ahmadi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran-Qom Express Way, Tehran, 3319118651, Iran
| | - Bahador Behrouz
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran-Qom Express Way, Tehran, 3319118651, Iran
| | - Seyed Latif Mousavi Gargari
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran-Qom Express Way, Tehran, 3319118651, Iran.
| |
Collapse
|
5
|
Focosi D, Maggi F. Respiratory delivery of passive immunotherapies for SARS-CoV-2 prophylaxis and therapy. Hum Vaccin Immunother 2023; 19:2260040. [PMID: 37799070 PMCID: PMC10561570 DOI: 10.1080/21645515.2023.2260040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Convalescent plasma has been extensively tested during the COVID-19 pandemic as a transfusion product. Similarly, monoclonal antibodies have been largely administered either intravenously or intramuscularly. Nevertheless, when used against a respiratory pathogen, respiratory delivery is preferable to maximize the amount of antibody that reaches the entry door in order to prevent sustained viral multiplication. In this narrative review, we review the different types of inhalation device and summarize evidence from animal models and early clinical trials supporting the respiratory delivery (for either prophylactic or therapeutic purposes) of convalescent plasma or monoclonal antibodies (either full antibodies, single-chain variable fragments, or camelid-derived monoclonal heavy-chain only antibodies). Preliminary evidences from animal models suggest similar safety and noninferior efficacy, but efficacy evaluation from clinical trials is still limited.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani IRCCS”, Rome, Italy
| |
Collapse
|
6
|
Lu Y, Shen F, He W, Li A, Li M, Feng X, Zheng Y, Pang W. HR121 targeting HR2 domain in S2 subunit of spike protein can serve as a broad-spectrum SARS-CoV-2 inhibitor via intranasal administration. Acta Pharm Sin B 2023:S2211-3835(23)00192-2. [PMID: 37360013 PMCID: PMC10219671 DOI: 10.1016/j.apsb.2023.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
The continuously emerging SARS-CoV-2 variants pose a great challenge to the efficacy of current drugs, this necessitates the development of broad-spectrum antiviral drugs. In the previous study, we designed a recombinant protein, heptad repeat (HR) 121, as a variant-proof vaccine. Here, we found it can act as a fusion inhibitor and demonstrated broadly neutralizing activities against SARS-CoV-2 and its main variants. Structure analysis suggested that HR121 targets the HR2 domain in SARS-CoV-2 spike (S) 2 subunit to block virus-cell fusion. Functional experiments demonstrated that HR121 can bind HR2 at serological-pH and endosomal-pH, highlighting its inhibition capacity when SARS-CoV-2 enters via either cellular membrane fusion or endosomal route. Importantly, HR121 can effectively inhibit SARS-CoV-2 and Omicron variant pseudoviruses entering the cells, as well as block authentic SARS-CoV-2 and Omicron BA.2 replications in human pulmonary alveolar epithelial cells. After intranasal administration to Syrian golden hamsters, it can protect hamsters from SARS-CoV-2 and Omicron BA.2 infection. Together, our results suggest that HR121 is a potent drug candidate with broadly neutralizing activities against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anqi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Li
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Xiaoli Feng
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Gu L, Liu Y, Zhang W, Li J, Chang C, Su Y, Yang Y. Novel extraction technologies and potential applications of egg yolk proteins. Food Sci Biotechnol 2022; 32:121-133. [PMID: 36590017 PMCID: PMC9795146 DOI: 10.1007/s10068-022-01209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
The high nutritional value and diverse functional properties of egg yolk proteins have led to its widespread use in the fields of food, medicine, and cosmetics. Various extraction methods have been reported to obtain the proteins from egg yolk, however, their utilization is limited due to the relatively low extraction efficiency and/or toxic solvents involved. Several simpler and greener technologies, especially physical fields (ultrasound), have been successfully developed to improve the extraction efficiency. The egg yolk proteins may exert multiple biological activities, enabling them to be a promising tool in improve human health and wellbeing, such as anti-obesity, anti-atherosclerosis, anti-osteoporosis, diagnosis and therapy for SARS-CoV-2 infections. This article summarizes the novel extraction technologies and latest applications of the egg yolk proteins in the recent 5 years, which should stimulate their utilization as health-promoting functional ingredients in foods and other commercial products.
Collapse
Affiliation(s)
- Luping Gu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shanxi Normal University, Xi’an, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Junhua Li
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Cuihua Chang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Yujie Su
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yanjun Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| |
Collapse
|
8
|
Frumkin LR, Lucas M, Wallach M, Scribner CL, St John T, Mochly-Rosen D. COVID-19 prophylaxis with immunoglobulin Y (IgY) for the world population: The critical role that governments and non-governmental organizations can play. J Glob Health 2022; 12:03080. [PMID: 36462205 PMCID: PMC9719602 DOI: 10.7189/jogh.12.03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Lyn R Frumkin
- SPARK at Stanford, Stanford University, School of Medicine, Stanford, California, USA
| | - Michaela Lucas
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Michael Wallach
- University of Technology Sydney, Sydney, New South Wales, Australia,SPARK Sydney, Sydney, New South Wales, Australia
| | | | - Tom St John
- SPARK at Stanford, Stanford University, School of Medicine, Stanford, California, USA
| | - Daria Mochly-Rosen
- SPARK at Stanford, Stanford University, School of Medicine, Stanford, California, USA,Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, California, USA,SPARK Global, Stanford University, School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Ravlo E, Evensen L, Sanson G, Hildonen S, Ianevski A, Skjervold PO, Ji P, Wang W, Kaarbø M, Kaynova GD, Kainov DE, Bjørås M. Antiviral Immunoglobulins of Chicken Egg Yolk for Potential Prevention of SARS-CoV-2 Infection. Viruses 2022; 14:v14102121. [PMID: 36298676 PMCID: PMC9609661 DOI: 10.3390/v14102121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Some viruses cause outbreaks, which require immediate attention. Neutralizing antibodies could be developed for viral outbreak management. However, the development of monoclonal antibodies is often long, laborious, and unprofitable. Here, we report the development of chicken polyclonal neutralizing antibodies against SARS-CoV-2 infection. Methods: Layers were immunized twice with 14-day intervals using the purified receptor-binding domain (RBD) of the S protein of SARS-CoV-2/Wuhan or SARS-CoV-2/Omicron. Eggs were harvested 14 days after the second immunization. Polyclonal IgY antibodies were extracted. Binding of anti-RBD IgYs was analyzed by immunoblot and indirect ELISA. Furthermore, the neutralization capacity of anti-RBD IgYs was measured in Vero-E6 cells infected with SARS-CoV-2-mCherry/Wuhan and SARS-CoV-2/Omicron using fluorescence and/or cell viability assays. In addition, the effect of IgYs on the expression of SARS-CoV-2 and host cytokine genes in the lungs of Syrian Golden hamsters was examined using qRT-PCR. Results: Anti-RBD IgYs efficiently bound viral RBDs in situ, neutralized the virus variants in vitro, and lowered viral RNA amplification, with minimal alteration of virus-mediated immune gene expression in vivo. Conclusions: Altogether, our results indicate that chicken polyclonal IgYs can be attractive targets for further pre-clinical and clinical development for the rapid management of outbreaks of emerging and re-emerging viruses.
Collapse
Affiliation(s)
- Erlend Ravlo
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
- Correspondence: (E.R.); (M.B.); Tel.: +47-73598474 (M.B.)
| | - Lasse Evensen
- Norimun AS, Felleskjøpet Agri SA, Postboks 469, 0105 Oslo, Norway
| | - Gorm Sanson
- Felleskjøpet Fôrutvikling AS, Nedre Ila 20, 7018 Trondheim, Norway
| | - Siri Hildonen
- Norimun AS, Felleskjøpet Agri SA, Postboks 469, 0105 Oslo, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | | | - Ping Ji
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Mari Kaarbø
- Department of Microbiology, Oslo University Hospital, 0105 Oslo, Norway
| | | | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
- Correspondence: (E.R.); (M.B.); Tel.: +47-73598474 (M.B.)
| |
Collapse
|
10
|
Wallach MG. Opinion: The use of chicken IgY in the control of pandemics. Front Immunol 2022; 13:954310. [PMID: 36032157 PMCID: PMC9405881 DOI: 10.3389/fimmu.2022.954310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Michael G. Wallach
- University of Technology Sydney, Sydney, NSW, Australia
- The Centre for Innovative Medical Research, SPARK Oceania, Sydney, NSW, Australia
- *Correspondence: Michael G. Wallach,
| |
Collapse
|
11
|
Frumkin LR, Lucas M, Scribner CL, Ortega-Heinly N, Rogers J, Yin G, Hallam TJ, Yam A, Bedard K, Begley R, Cohen CA, Badger CV, Abbasi SA, Dye JM, McMillan B, Wallach M, Bricker TL, Joshi A, Boon ACM, Pokhrel S, Kraemer BR, Lee L, Kargotich S, Agochiya M, John TS, Mochly-Rosen D. Egg-Derived Anti-SARS-CoV-2 Immunoglobulin Y (IgY) With Broad Variant Activity as Intranasal Prophylaxis Against COVID-19. Front Immunol 2022; 13:899617. [PMID: 35720389 PMCID: PMC9199392 DOI: 10.3389/fimmu.2022.899617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 01/17/2023] Open
Abstract
COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity. Antibodies from eggs of hens (immunoglobulin Y; IgY) that were administered the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were developed for use as nasal drops to capture the virus on the nasal mucosa. Although initially raised against the 2019 novel coronavirus index strain (2019-nCoV), these anti-SARS-CoV-2 RBD IgY surprisingly had indistinguishable enzyme-linked immunosorbent assay binding against variants of concern that have emerged, including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). This is different from sera of immunized or convalescent patients. Culture neutralization titers against available Alpha, Beta, and Delta were also indistinguishable from the index SARS-CoV-2 strain. Efforts to develop these IgY for clinical use demonstrated that the intranasal anti-SARS-CoV-2 RBD IgY preparation showed no binding (cross-reactivity) to a variety of human tissues and had an excellent safety profile in rats following 28-day intranasal delivery of the formulated IgY. A double-blind, randomized, placebo-controlled phase 1 study evaluating single-ascending and multiple doses of anti-SARS-CoV-2 RBD IgY administered intranasally for 14 days in 48 healthy adults also demonstrated an excellent safety and tolerability profile, and no evidence of systemic absorption. As these antiviral IgY have broad selectivity against many variants of concern, are fast to produce, and are a low-cost product, their use as prophylaxis to reduce SARS-CoV-2 viral transmission warrants further evaluation. Clinical Trial Registration https://www.clinicaltrials.gov/ct2/show/NCT04567810, identifier NCT04567810.
Collapse
Affiliation(s)
- Lyn R. Frumkin
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Michaela Lucas
- Faculty of Health and Medical Sciences Internal Medicine, The University of Western Australia, Perth, WA, Australia
| | | | | | - Jayden Rogers
- Linear Clinical Research Ltd, Nedlands, WA, Australia
| | - Gang Yin
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | | | - Alice Yam
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | - Kristin Bedard
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | - Rebecca Begley
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Courtney A. Cohen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Catherine V. Badger
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Shawn A. Abbasi
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | | | - Michael Wallach
- University of Technology Sydney, Sydney, NSW, Australia
- SPARK Sydney, Sydney, NSW, Australia
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Benjamin R. Kraemer
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Stephen Kargotich
- School of Medicine, SPARK Global, Stanford University, Stanford, CA, United States
| | - Mahima Agochiya
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Tom St. John
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Daria Mochly-Rosen
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
- School of Medicine, SPARK Global, Stanford University, Stanford, CA, United States
| |
Collapse
|