1
|
Hazem SH, Saad KM, Samaha MM. Protective effects of BTK inhibition by acalabrutinib on cisplatin-induced renal and testicular injury in mice: Modulation of mTOR/AMPK, NLRP3/GSDMD-N, and apoptotic pathways. Int Immunopharmacol 2025; 149:114256. [PMID: 39938312 DOI: 10.1016/j.intimp.2025.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Cisplatin-induced nephrotoxicity and testicular injury pose significant challenges during chemotherapy. AIM The current study evaluates the efficacy of acalabrutinib (ACB), a Bruton's tyrosine kinase inhibitor, in mitigating cisplatin-induced damage in renal and testicular tissues in mice. METHODS Testicular and renal toxicity was induced by a single I.P. injection of cisplatin (25 mg/kg). Mice were randomized into four groups: Normal (treated with vehicle), Cis (cisplatin + vehicle), Cis + ACB (6 mg/kg), and Cis + ACB (12 mg/kg). ACB was administered orally for three consecutive days, starting at Day 0 (1 h before single I.P. injection of cisplatin) and continued for Day 1 and Day 2. RESULTS ACB treatment (6 mg/kg and 12 mg/kg) significantly improved renal function by reducing serum creatinine, BUN, and KIM-1 levels, while also attenuating inflammation and apoptosis, as evidenced by decreased NLRP3, CD68, and caspase-3 expression. Additionally, it mitigated molecular damage by downregulating mTOR, AMPK, and GSDMD-N. In testicular tissues, ACB preserved structure, restored spermatogenesis, and improved sperm viability and testosterone levels. The protective effects were associated with reduced inflammation, apoptosis, and pyroptosis, indicated by lower levels of cathepsin L, NLRP3, and GSDMD-N. CONCLUSIONS These findings suggest that ACB offers a promising therapeutic approach to reduce the adverse effects of cisplatin, potentially enhancing the overall efficacy and safety of chemotherapy regimens.
Collapse
Affiliation(s)
- Sara H Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516 Egypt.
| | - Karim M Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516 Egypt.
| | - Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516 Egypt.
| |
Collapse
|
2
|
Du Y, Fu Y, Gao Y, Poojitha D, Kamala V, Li Q, Zhou X, Mohan C. Infiltrating macrophages and interferon gamma rather than renal genotype dictate heightened crescentic glomerulonephritis. Front Immunol 2024; 15:1484525. [PMID: 39749339 PMCID: PMC11693704 DOI: 10.3389/fimmu.2024.1484525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Both intrinsic renal cells and immune cells contribute to driving renal inflammation and damage. However, the respective roles of intrinsic renal cells and immune cells in crescentic glomerulonephritis, and the key molecular factors driving pathogenesis are still unclear. METHODS The roles of intrinsic renal cells and renal infiltrating immune cells in crescent formation were explored using renal transplantation after experimental anti-GBM disease induction in 129x1/svJ and C57BL/6J mice. Both strains share MHC, but vary in anti-GBM nephritis susceptibility. The role of macrophage and IFN-γ in crescent formation was investigated using adoptive transfer of macrophages with altered IFN-γ expression. The gene expression profile difference between 129x1/svJ and C57BL/6J macrophages was compared using Affymetrix arrays and Gene Ontology (GO) enrichment analysis. RESULTS B6 recipient mice transplanted with 129x1/svJ kidneys were resistant to anti-GBM challenge, as evidenced by stable renal function and less severe renal pathology. Conversely, 129x1/svJ recipient mice receiving B6 kidneys developed severe renal damage with crescent formation, comparable to the disease in parental 129x1/svJ mice. 129x1/svJ macrophages exhibited heightened IFN-γ and IFN-γ related gene expression compared to B6 macrophages. Adoptive transfer of 129x1/svJ macrophages with subdued IFN-γ expression reduced anti-GBM nephritis, while B6 macrophages with up-regulated IFN- γ expression worsened renal damage. CONCLUSION Using renal transplantation between 129x1/svJ and C57BL/6J mice and anti-GBM disease induction, we found infiltrating immune cells, not intrinsic renal cells, to play the dominant role in initialing and driving glomerular crescent formation. In particular, macrophage IFN-γ expression was critical for crescent formation.
Collapse
Affiliation(s)
- Yong Du
- College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yuyang Fu
- Department of Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yuyang Gao
- Department of Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dugyala Poojitha
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Vanarsa Kamala
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Quanzhen Li
- Department of Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xinjing Zhou
- Department of Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chandra Mohan
- Department of Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Zou Y, Wang D, Sun W, Wu Q, Liu S, Ren Z, Li Y, Zhao T, Li Z, Li X, Cao W, Han J, Guo X, Ren G. Fibroblast growth factor 21 mitigates lupus nephritis progression via the FGF21/Irgm 1/NLRP3 inflammasome pathway. Int Immunopharmacol 2024; 131:111875. [PMID: 38508095 DOI: 10.1016/j.intimp.2024.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
As an endocrine cytokine, fibroblast growth factor 21 (FGF21) exhibits anti-inflammatory properties. With the development of lupus nephritis (LN), which is tightly related to pathogenic factors, including inflammation and immune cell dysregulation, we explored the impact of Fibroblast Growth Factor 21 (FGF21) as well as its underlying mechanism. We induced an in vivo LN model using pristane in both wild-type C57BL/6 and FGF21 knockout (FGF21-/-) mice. LN serum obtained from 32-week-old wild-type LN mice was used to stimulate RAW264.7 and human renal tubular epithelial (HK-2) cells to mimic an in vitro LN model. Moreover, our findings revealed that FGF21-/- mice showed more severe kidney injury compared to wild-type mice, as evidenced by increased levels of renal function markers, inflammatory factors, and fibrosis markers. Notably, exogenous administration of FGF21 to wild-type LN mice markedly mitigated these adverse effects. Additionally, we used tandem mass tag (TMT)-based quantitative proteomics to detect differentially expressed proteins following FGF21 treatment. Results indicated that 121 differentially expressed proteins influenced by FGF21 were involved in biological processes such as immune response and complement activation. Significantly upregulated protein Irgm 1, coupled with modulated inflammatory response, appeared to contribute to the beneficial effects of FGF21. Furthermore, Western blot analysis demonstrated that FGF21 upregulated Irgm 1 while inhibiting nucleotide-binding oligomerization domain-like receptors family pyrin domain including 3 (NLRP3) inflammasome expression. Silencing Irgm 1, in turn, reversed FGF21's inhibitory effect on NLRP3 inflammasome. In summary, FGF21 can potentially alleviate pristane-induced lupus nephritis in mice, possibly through the FGF21/Irgm 1/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Yimeng Zou
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Wang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenying Sun
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qing Wu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shijie Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zeheng Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanan Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianqi Zhao
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhitong Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Weiyue Cao
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiachi Han
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaochen Guo
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Guiping Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Bohat R, Liang X, Chen Y, Xu C, Zheng N, Guerrero A, Hou J, Jaffery R, Egan NA, Li Y, Tang Y, Unsal E, Robles A, Chen S, Major AM, Elldakli H, Chung SH, Liang H, Hicks MJ, Du Y, Lin JS, Chen X, Mohan C, Peng W. Fas lpr gene dosage tunes the extent of lymphoproliferation and T cell differentiation in lupus. Clin Immunol 2024; 258:109874. [PMID: 38113962 DOI: 10.1016/j.clim.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Sle1 and Faslpr are two lupus susceptibility loci that lead to manifestations of systemic lupus erythematosus. To evaluate the dosage effects of Faslpr in determining cellular and serological phenotypes associated with lupus, we developed a new C57BL/6 (B6) congenic lupus strain, B6.Sle1/Sle1.Faslpr/+ (Sle1homo.lprhet) and compared it with B6.Faslpr/lpr (lprhomo), B6.Sle1/Sle1 (Sle1homo), and B6.Sle1/Sle1.Faslpr/lpr (Sle1homo.lprhomo) strains. Whereas Sle1homo.lprhomo mice exhibited profound lymphoproliferation and early mortality, Sle1homo.lprhet mice had a lifespan comparable to B6 mice, with no evidence of splenomegaly or lymphadenopathy. Compared to B6 monogenic lupus strains, Sle1homo.lprhet mice exhibited significantly elevated serum ANA antibodies and increased proteinuria. Additionally, Sle1homo.lprhet T cells had an increased propensity to differentiate into Th1 cells. Gene dose effects of Faslpr were noted in upregulating serum IL-1⍺, IL-2, and IL-27. Taken together, Sle1homo.lprhet strain is a new C57BL/6-based model of lupus, ideal for genetic studies, autoantibody repertoire investigation, and for exploring Th1 effector cell skewing without early-age lymphoproliferative autoimmunity.
Collapse
Affiliation(s)
- Ritu Bohat
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Xiaofang Liang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Yanping Chen
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America
| | - Chunyu Xu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Ningbo Zheng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Ashley Guerrero
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Jiakai Hou
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Roshni Jaffery
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Nicholas A Egan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson, Houston, TX 77030, United States of America
| | - Esra Unsal
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Adolfo Robles
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Si Chen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Angela M Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Hadil Elldakli
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Sang-Hyuk Chung
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - M John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Yong Du
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, United States of America
| | - Jamie S Lin
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Xiqun Chen
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
5
|
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: an emerging therapeutic target in renal diseases. Front Immunol 2023; 14:1253667. [PMID: 37744367 PMCID: PMC10514582 DOI: 10.3389/fimmu.2023.1253667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear and granular components. The primary role of NETS is to prevent the dissemination of microbes and facilitate their elimination. However, this process is accompanied by collateral proinflammatory adverse effects when the NET release becomes uncontrollable, or clearance is impaired. Although NET-induced organ damage is conducted primarily and indirectly via immune complexes and the subsequent release of cytokines, their direct effects on cells are also remarkable. NETosis plays a critical pathogenic role in several renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic microangiopathies, anti-glomerular basement membrane disease, and diabetic nephropathy. Their substantial contribution in the course of these disorders makes them a desirable target in the therapeutic armamentarium. This article gives an in-depth review of the heterogeneous pathogenesis and physiological regulations of NETosis and its pivotal role in renal diseases. Based on the pathogenesis, the article also outlines the current therapeutic options and possible molecular targets in the treatment of NET-related renal disorders. Methods We carried out thorough literature research published in PubMed and Google Scholar, including a comprehensive review and analysis of the classification, pathomechanisms, and a broad spectrum of NET-related kidney disorders. Conclusions NETosis plays a pivotal role in certain renal diseases. It initiates and maintains inflammatory and autoimmune disorders, thus making it a desirable target for improving patient and renal outcomes. Better understanding and clinical translation of the pathogenesis are crucial aspects to treatment, for improving patient, and renal outcomes.
Collapse
Affiliation(s)
- Márk Juha
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Adél Molnár
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Nóra Ledó
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Gumkowska-Sroka O, Kotyla K, Mojs E, Palka K, Kotyla P. Novel Therapeutic Strategies in the Treatment of Systemic Sclerosis. Pharmaceuticals (Basel) 2023; 16:1066. [PMID: 37630981 PMCID: PMC10458905 DOI: 10.3390/ph16081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin and with an unpredictable course, with both cutaneous and internal organ manifestations. Despite the enormous progress in rheumatology and clinical immunology, the background of this disease is largely unknown, and no specific therapy exists. The therapeutic approach aims to treat and preserve the function of internal organs, and this approach is commonly referred to as organ-based treatment. However, in modern times, data from other branches of medicine may offer insight into how to treat disease-related complications, making it possible to find new drugs to treat this disease. In this review, we present therapeutic options aiming to stop the progression of fibrotic processes, restore the aberrant immune response, stop improper signalling from proinflammatory cytokines, and halt the production of disease-related autoantibodies.
Collapse
Affiliation(s)
- Olga Gumkowska-Sroka
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Kacper Kotyla
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Klaudia Palka
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Przemysław Kotyla
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| |
Collapse
|