1
|
Jiang H, Zhou L, Zhang H, Yu Z. E2F expression profiling-based subtypes in head and neck squamous cell carcinoma: clinical relevance, prognostic implications, and personalized therapy. World J Surg Oncol 2025; 23:157. [PMID: 40275315 PMCID: PMC12023618 DOI: 10.1186/s12957-025-03808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy with poor prognosis. Dysregulation of E2F transcription factors (E2Fs), which control cell proliferation and apoptosis, is implicated in HNSCC pathogenesis. This study explores HNSCC molecular heterogeneity via E2Fs expression, identifies distinct subtypes, and develops a prognostic model that integrates gene expression, immune infiltration, and drug sensitivity. METHODS We analyzed the TCGA-HNSC dataset (n = 494) and classified samples based on the expression of eight E2Fs using ConsensusClusterPlus. The optimal number of clusters (k = 2) was determined with the getOptK() function, which assesses cluster stability via internal consistency metrics. Differentially expressed genes between subtypes were identified with limma, and functional annotation was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. A prognostic model was constructed using LASSO regression on genes significant in univariate Cox analysis and validated in an independent GSE41613 dataset (n = 97). Immune cell infiltration was estimated using CIBERSORT, and drug sensitivity predicted via pRRophetic. Confounding factors such as HPV and smoking status were not included due to incomplete data. RESULTS Two distinct E2F-based subtypes emerged. Cluster 1, characterized by lower E2Fs expression, exhibited poorer overall survival (log-rank, p = 0.035) and was enriched in genes related to epidermal development, keratinocyte differentiation, and IL-17 signaling. In contrast, Cluster 2 showed higher E2Fs expression, better survival, and enrichment in genes associated with DNA replication and repair. Notably, high-risk patients demonstrated increased infiltration of M0 and M2 macrophages (p < 0.05), suggesting an immunosuppressive tumor microenvironment that adversely affects prognosis. Our seven-gene prognostic model (AREG, CXCL14, FAM83E, FDCSP, ARHGAP4, EPHX3, and SPINK6) exhibited robust performance with AUCs of 0.692, 0.673, and 0.679 for 1-, 3-, and 5-year survival, a C-index of 0.66, and good calibration. High-risk patients also showed greater sensitivity to targeted agents such as pazopanib and imatinib. CONCLUSIONS These findings reveal two distinct E2F-based molecular subtypes of HNSCC that differ in prognosis, functional pathways, immune infiltration, and drug sensitivity. The prognostic model offers valuable risk stratification and identifies potential biomarkers and therapeutic targets, warranting further experimental and clinical validation.
Collapse
Affiliation(s)
- Huanyu Jiang
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Lijuan Zhou
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Haidong Zhang
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Zhenkun Yu
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China.
| |
Collapse
|
2
|
Corti A, Lenoci D, Corino VDA, Mattavelli D, Ravanelli M, Poli T, Cavalieri S, Licitra L, De Cecco L, Mainardi L. Interplay between MRI radiomics and immune gene expression signatures in oral squamous cell carcinoma. Sci Rep 2025; 15:12622. [PMID: 40221527 PMCID: PMC11993570 DOI: 10.1038/s41598-025-96821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
With the advances in immunotherapy and the challenge of poor responsiveness in oral squamous cell carcinoma (OSCC) patients, understanding the tumor microenvironment is crucial. Radiogenomics offers the potential to provide pre-operative, non-invasive image-derived immune biomarkers. To this aim, the present study explores the capability of MRI-based radiomics to describe patients' immune state in OSCC. Seven MRI-based radiomic, 29 immune-related gene expression signatures were computed and deconvolution analysis was performed for a subset of OSCC from the BD2Decide database. A correlation-driven analysis identified key associations between radiomic and immune-related signatures and cell populations. Radiomic classifiers of the gene expression signatures were then developed to evaluate their capability to stratify patients based on immune status. MRI-based radiomic models showed promising results in predicting a gene expression signature associated with significant prognostic value for HNSCC patients who underwent radiotherapy (AUC = 0.92), suggesting these models' potential in distinguishing radioresistant from radiosensitive patients, aiding treatment decisions. Additionally, radiomic signatures reflected immune infiltrating cells in our cohort (M1, CD8 + T, B cells). MRI-radiomic signatures and associated models could become non-invasive methods to evaluate the prognosis and treatment choice in OSCC patients. Based on our promising results, and upon external validation, MRI-radiomics could enhance personalized medicine approaches.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy.
| | - Deborah Lenoci
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Marco Ravanelli
- Unit of Radiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Tito Poli
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| |
Collapse
|
3
|
Dai H, Zhang X, Zhao Y, Nie J, Hang Z, Huang X, Ma H, Wang L, Li Z, Wu M, Fan J, Jiang K, Luo W, Qin C. ADME gene-driven prognostic model for bladder cancer: a breakthrough in predicting survival and personalized treatment. Hereditas 2025; 162:42. [PMID: 40108724 PMCID: PMC11921678 DOI: 10.1186/s41065-025-00409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Genes that participate in the absorption, distribution, metabolism, excretion (ADME) processes occupy a central role in pharmacokinetics. Meanwhile, variability in clinical outcomes and responses to treatment is notable in bladder cancer (BLCA). METHODS Our study utilized expansive datasets from TCGA and the GEO to explore prognostic factors in bladder cancer. Utilizing both univariate Cox regression and the lasso regression techniques, we identified ADME genes critical for patient outcomes. Utilizing genes identified in our study, a model for assessing risk was constructed. The evaluation of this model's predictive precision was conducted using Kaplan-Meier survival curves and assessments based on ROC curves. Furthermore, we devised a predictive nomogram, offering a straightforward visualization of crucial prognostic indicators. To explore the potential factors mediating the differences in outcomes between high and low risk groups, we performed comprehensive analyses including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)-based enrichment analyses, immune infiltration variations, somatic mutation landscapes, and pharmacological sensitivity response assessment etc. Immediately following this, we selected core genes based on the PPI network and explored the prognostic potential of the core genes as well as immune modulation, and pathway activation. And the differential expression was verified by immunohistochemistry and qRT-PCR. Finally we explored the potential of the core genes as pan-cancer biomarkers. RESULTS Our efforts culminated in the establishment of a validated 17-gene ADME-centered risk prediction model, displaying remarkable predictive accuracy for BLCA prognosis. Through separate cox regression analyses, the importance of the model's risk score in forecasting BLCA outcomes was substantiated. Furthermore, a novel nomogram incorporating clinical variables alongside the risk score was introduced. Comprehensive studies established a strong correlation between the risk score and several key indicators: patterns of immune cell infiltration, reactions to immunotherapy, landscape of somatic mutation and profiles of drug sensitivity. We screened the core prognostic gene CYP2C8, explored its role in tumor bioregulation and validated its upregulated expression in bladder cancer. Furthermore, we found that it can serve as a reliable biomarker for pan-cancer. CONCLUSION The risk assessment model formulated in our research stands as a formidable instrument for forecasting BLCA prognosis, while also providing insights into the disease's progression mechanisms and guiding clinical decision-making strategies.
Collapse
Affiliation(s)
- Haojie Dai
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xi Zhang
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Urology, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - You Zhao
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jun Nie
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Zhenyu Hang
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xin Huang
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hongxiang Ma
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li Wang
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Zihao Li
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ming Wu
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jun Fan
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ke Jiang
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Weiping Luo
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Chao Qin
- The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Urology, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Chen X, Xu S, Pan J, Xu W, Yang H, Chen X, Chen R, Wang Y, Qiu S. Integrative single cell transcriptomic analysis reveals 3p deletion associated tumor microenvironment and chemoresistance in head and neck squamous cell carcinoma. Sci Rep 2025; 15:8224. [PMID: 40064955 PMCID: PMC11893908 DOI: 10.1038/s41598-025-92078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent and lethal malignancy, with a five-year survival rate of just 50% for cases of locally advanced disease. Chromosomal aberrations, particularly the deletion of the short arm of chromosome 3 (3p), have been strongly associated with poor prognosis and more aggressive tumor phenotypes. The tumor microenvironment (TME) plays a pivotal role in tumor progression and resistance to therapy. This study aims to elucidate the impact of 3p deletion on the TME, immune cell infiltration, and treatment response in HNSCC, to identify novel therapeutic targets to improve patient outcomes. We analyzed single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) and bulk transcriptome data from The Cancer Genome Atlas (TCGA). Pseudo-time trajectory and cell-cell communication analyses were performed with the Monocle and CellChat packages. The Wilcoxon test was used to evaluate the differential gene expression between wild-type (wt) and mutant (mut) groups. Prognostic models were developed using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and Cox regression analyses to find the genes related to survival, with survival analysis conducted via Kaplan-Meier curves. Gene set enrichment analysis (GSEA) was employed to investigate pathway dysregulation, and immune cell infiltration was assessed using various immune scoring methodologies to explore the differences immune environment. The Tumor Immune Dysfunction and Exclusion (TIDE) database was utilized to predict the potential efficacy of immune checkpoint inhibitors. mRNA and protein expression levels of SPP1 were examined by RT-qPCR and Western blotting, while cell proliferation was assessed using the CCK8 assay. The mut group demonstrated significant alterations in cellular composition, characterized by increased endothelial cells and macrophages and decreased fibroblasts and CD8 + T cells, indicative of an immunosuppressive TME. Differential expression analysis revealed downregulation of immune pathways, including antigen processing and presentation, T cell receptor signaling, and B cell receptor signaling pathways in the mut group, along with enhanced metabolic activity in glycolysis and lipid metabolism. The prognostic model identified nine key genes associated with poor survival in HNSCC. The mut group exhibited poorer overall survival and a more immunosuppressive microenvironment compared to the wt group, which correlated with the outcomes observed in high-risk versus low-risk groups. High-risk patients also showed a diminished response to immunotherapy compared to low-risk patients. Additionally, SPP1 emerged as a critical gene associated with chemotherapy resistance and macrophage M2 polarization. This study demonstrates that 3p deletion significantly reshapes the TME, contributing to poor prognosis in HNSCC by fostering an immunosuppressive environment and enhancing chemoresistance. These findings highlight the potential for developing targeted therapies that address the genetic and immunological landscape of HNSCC.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Siqi Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junping Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wenqian Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hanxuan Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xin Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ronghui Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuan Wang
- The school of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| |
Collapse
|
5
|
Wang H, Li F, Wang Q, Guo X, Chen X, Zou X, Yuan J. Identifying ADME-related gene signature for immune landscape and prognosis in KIRC by single-cell and spatial transcriptome analysis. Sci Rep 2025; 15:1294. [PMID: 39779746 PMCID: PMC11711672 DOI: 10.1038/s41598-024-84018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most prevalent subtype of kidney cancer. Although multiple therapeutic agents have been proven effective in KIRC, their clinical application has been hindered by a lack of reliable biomarkers. This study focused on the prognostic value and function of drug absorption, distribution, metabolism, and excretion- (ADME-) related genes (ARGs) in KIRC to enhance personalized therapy. The critical role of ARGs in KIRC microenvironment was confirmed by single cell RNA-seq analysis and spatial transcriptome sequencing analysis for the first time. Then, an ADME-related prognostic signature (ARPS) was developed by the bulk RNA-seq analysis. The ARPS, created through Cox regression, LASSO, and stepAIC analyses, identified eight ARGs that stratified patients into high-risk and low-risk groups. High-risk patients had significantly poorer overall survival. Multivariate analysis confirmed the independent predictive ability of ARPS, and an ARPS-based nomogram was constructed for clinical application. Gene ontology and KEGG pathway analyses revealed immune-related functions and pathways enriched in these groups, with low-risk patients showing better responses to immunotherapy. Finally, the expression of ARGs was validated by qRT-PCR and Western blotting experiments. These findings underscore the prognostic significance of ARPS in KIRC and its potential application in guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Hongyun Wang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Feizhou Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Qiong Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyuan Guo
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinbing Chen
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinrong Zou
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.
- Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Institute of Chinese Medicine Nephrology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine (Hubei Province Hospital of Traditional Chinese Medicine), Wuhan, 430061, China.
| | - Jun Yuan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Li L, Liu Y, Li X, He Y, Tian Z. Effect of group management on disease cognition and fear of disease progression, nutritional status, and quality of life in patients with head and neck tumors. Am J Transl Res 2024; 16:7937-7947. [PMID: 39822501 PMCID: PMC11733339 DOI: 10.62347/cbkg3767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE To investigate the effect of group guided training management on disease cognition and fear of disease progression, nutritional status, and quality of life in patients undergoing chemotherapy for head and neck tumors. METHODS A total of 88 patients diagnosed with malignant head and neck tumors who were admitted to Beijing Tongren Hospital, Capital Medical University from January 2020 to February 2021 were included as the subjects of this study. Patients receiving standard care were set as the control group (n=43), and patients undergoing group education were set as the study group (n=45). The fear of disease progression, level of hope, nutritional status, knowledge, attitude, behaviors, quality of life, self-management efficacy, and adverse reactions were compared between the two groups. Factors affecting patient's prognosis were also analyzed. RESULTS Group guided management for chemotherapy patients with head and neck tumors significantly reduced the fear of disease progression in the study group compared to the control group (P=0.010). Additionally, the study group showed significantly higher levels of hope (P=0.006), nutritional status (P=0.019), nutritional knowledge (P=0.006), positive attitude (P=0.007), and health behavior (P=0.032) than those in the control group. The incidence of malnutrition at 1 month and 3 months after intervention (P=0.005, P=0.009) and adverse reactions (P=0.001) in the study group were significantly lower than those in control group. Furthermore, the quality of life (P=0.011) and self-management efficacy (P=0.008, P=0.019) in the study group were significantly higher than those in the control group. Nursing interventions and self-efficacy were identified as independent risk factors for fear of disease progression and hope level (all P < 0.05). CONCLUSION A group management model, through specialized health education and guidance, can significantly reduce patient's fear of disease progression, alleviate negative emotions, enhance their self-management ability, and improve quality of life. This approach fosters a proactive attitude toward treatment and contributes to better therapeutic outcomes.
Collapse
Affiliation(s)
- Li Li
- Department of ENT, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Yongling Liu
- Department of ENT, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Xiuya Li
- Department of ENT, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Yiran He
- Department of ENT, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Zirong Tian
- Department of Nursing, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| |
Collapse
|
7
|
Liu S, Chen L. Deciphering single-cell gene expression variability and its role in drug response. Hum Mol Genet 2024; 33:2024-2034. [PMID: 39277847 DOI: 10.1093/hmg/ddae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
The effectiveness of drug treatments is profoundly influenced by individual responses, which are shaped by gene expression variability, particularly within pharmacogenes. Leveraging single-cell RNA sequencing (scRNA-seq) data, our study explores the extent of expression variability among pharmacogenes in a wide array of cell types across eight different human tissues, shedding light on their impact on drug responses. Our findings broaden the established link between variability in pharmacogene expression and drug efficacy to encompass variability at the cellular level. Moreover, we unveil a promising approach to enhance drug efficacy prediction. This is achieved by leveraging a combination of cross-cell and cross-individual pharmacogene expression variation measurements. Our study opens avenues for more precise forecasting of drug performance, facilitating tailored and more effective treatments in the future.
Collapse
Affiliation(s)
- Sizhe Liu
- Thomas Lord Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, CA 90089, United States
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States
| |
Collapse
|
8
|
Wu Z, Guo Y, Qu L, Wang X, Zhang H. Development and validation of a prognostic signature of breast cancer based on drug absorption, distribution, metabolism and excretion (ADME)-related genes. Sci Rep 2024; 14:21619. [PMID: 39284852 PMCID: PMC11405771 DOI: 10.1038/s41598-024-72635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The individual variation of carcinogenesis and drug response is influenced by the absorption, distribution, metabolism, and excretion (ADME) of drugs. The utilization of signatures derived from ADME-related genes holds potential for predicting prognosis and treatment response across diverse cancer types. Further investigation is required to completely understand the role of ADME-associated genes in breast cancer. A signature was constructed through the application of a least absolute shrinkage and selection operator regression model, employing prognostic differentially expressed genes found in both cancer tissue and normal tissue. To assess the robustness of the signature, verification analyses were carried out. RT-qPCR was utilized for the validation of gene expression related to risk. Subsequently, a nomogram was developed to enhance the clinical utility of our prognostic tool. The ADME signature, comprising four genes, was established and exhibited a robust association with the prognoses of individuals diagnosed with breast cancer. The nomogram was created by fusing the clinicopathological characteristics with the ADME signature. The ADME signature demonstrated remarkable superiority when compared to the performance of the other individual predictors. Additionally, the analysis of the immune microenvironment revealed that the ImmuneScores of the low-risk group were elevated. The variation in both the infiltration of immune cells and the expression of immune-related genes in the tissues differed among the two groups. For patients with breast cancer, the utilization of ADME signatures as biomarkers presents a significant reference point for prognosis and individualized treatment strategies.
Collapse
Affiliation(s)
- Zhixuan Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yangyang Guo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Liangchen Qu
- Emergency Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, 318000, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, China
| | - Hewei Zhang
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.
- Department of Hepatobiliary and Pancreatic Surgery, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang Province, 325000, China.
| |
Collapse
|
9
|
Chi H, Peng G, Song G, Zhang J, Xie X, Yang J, Xu J, Zhang J, Xu K, Wu Q, Yang G. Deciphering a Prognostic Signature Based on Soluble Mediators Defines the Immune Landscape and Predicts Prognosis in HNSCC. FRONT BIOSCI-LANDMRK 2024; 29:130. [PMID: 38538268 DOI: 10.31083/j.fbl2903130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The study on Head and Neck Squamous Cell Carcinoma (HNSCC), a prevalent and aggressive form of head and neck cancer, focuses on the often-overlooked role of soluble mediators. The objective is to leverage a transcriptome-based risk analysis utilizing soluble mediator-related genes (SMRGs) to provide novel insights into prognosis and immunotherapy efficacy in HNSCC patients. METHODS We analyzed the expression and prognostic significance of 10,859 SMRGs using 502 HNSCC and 44 normal samples from the TCGA-HNSC cohort in The Cancer Genome Atlas (TCGA). The samples were divided into training and test sets in a 7:3 ratio, with an additional external validation using 40 tumor samples from the International Cancer Genome Consortium (ICGC). Key differentially expressed genes (DEGs) with prognostic significance were identified through univariate and Lasso-Cox regression analyses. A prognostic model based on 20 SMRGs was developed using Lasso and multivariate Cox regression. We assessed the clinical outcomes and immune status in high-risk (HR) and low-risk (LR) HNSCC patients utilizing the BEST databases and single-sample Gene Set Enrichment Analysis (ssGSEA). RESULTS The 20 SMRGs were crucial in predicting the prognosis of HNSCC, with the SMRG signature emerging as an independent prognostic indicator. Patients classified in the HR group exhibited poorer outcomes compared to those in the LR group. A nomogram, integrating clinical characteristics and risk scores, demonstrated substantial prognostic value. Immunotherapy appeared to be more effective in the LR group, possibly attributed to enhanced immune infiltration and expression of immune checkpoints. CONCLUSIONS The model based on soluble mediator-associated genes offers a fresh perspective for assessing the pre-immune efficacy and showcases robust predictive capabilities. This innovative approach holds significant promise in advancing the field of precision immuno-oncology research, providing valuable insights for personalized treatment strategies in HNSCC.
Collapse
Affiliation(s)
- Hao Chi
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078 Taipa, Macau, China
- Clinical Medical College, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Xixi Xie
- Clinical Medical College, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Jinyan Yang
- Clinical Medical College, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Jiayu Xu
- School of Science, Minzu University of China, 100081 Beijing, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300072 Tianjin, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, 401147 Chongqing, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078 Taipa, Macau, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
10
|
Liu S, Wang R, Fang J. Exploring the frontiers: tumor immune microenvironment and immunotherapy in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:22. [PMID: 38294629 PMCID: PMC10830966 DOI: 10.1007/s12672-024-00870-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The global prevalence of head and neck malignancies positions them as the sixth most common form of cancer, with the head and neck squamous cell carcinoma (HNSCC) representing the predominant histological subtype. Despite advancements in multidisciplinary approaches and molecular targeted therapies, the therapeutic outcomes for HNSCC have only marginally improved, particularly in cases of recurrent or metastatic HNSCC (R/MHNSCC). This situation underscores the critical necessity for the development of innovative therapeutic strategies. Such strategies are essential not only to enhance the efficacy of HNSCC treatment but also to minimize the incidence of associated complications, thus improving overall patient prognosis. Cancer immunotherapy represents a cutting-edge cancer treatment that leverages the immune system for targeting and destroying cancer cells. It's applied to multiple cancers, including melanoma and lung cancer, offering precision, adaptability, and the potential for long-lasting remission through immune memory. It is observed that while HNSCC patients responsive to immunotherapy often experience prolonged therapeutic benefits, only a limited subset demonstrates such responsiveness. Additionally, significant clinical challenges remain, including the development of resistance to immunotherapy. The biological characteristics, dynamic inhibitory changes, and heterogeneity of the tumor microenvironment (TME) in HNSCC play critical roles in its pathogenesis, immune evasion, and therapeutic resistance. This review aims to elucidate the functions and mechanisms of anti-tumor immune cells and extracellular components within the HNSCC TME. It also introduces several immunosuppressive agents commonly utilized in HNSCC immunotherapy, examines factors influencing the effectiveness of these treatments, and provides a comprehensive summary of immunotherapeutic strategies relevant to HNSCC.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Kuk SK, Kim K, Lee JI, Pang K. Prognostic DNA mutation and mRNA expression analysis of perineural invasion in oral squamous cell carcinoma. Sci Rep 2024; 14:2427. [PMID: 38287071 PMCID: PMC10825128 DOI: 10.1038/s41598-024-52745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
This study analyzed oral squamous cell carcinoma (OSCC) genomes and transcriptomes in relation to perineural invasion (PNI) and prognosis using Cancer Genome Atlas data and validated these results with GSE41613 data. Gene set enrichment analysis (GSEA), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes were conducted. We identified 22 DNA mutations associated with both overall survival (OS) and PNI. Among them, TGFBR1 and RPS6KA4 mRNAs were overexpressed, while TYRO3 and GPR137 mRNAs were underexpressed in PNI patients. Among the 141 mRNA genes associated with both OS and PNI, we found overlap with PNI-related DNA mutations, including ZNF43, TEX10, TPSD1, and PSD3. In GSE41613 data, TGFBR1, RPS6KA4, TYRO3, GPR137, TEX10 and TPSD1 mRNAs were expressed differently according to the prognosis. The 22 DNA-mutated genes clustered into nervous system development, regulation of DNA-templated transcription, and transforming growth factor beta binding. GSEA analysis of mRNAs revealed upregulation of hallmarks epithelial mesenchymal transition (EMT), TNFα signaling via NF-κB, and IL2 STAT5 signaling. EMT upregulation aligned with the TGFBR1 DNA mutation, supporting its significance in PNI. These findings suggest a potential role of PNI genes in the prognosis of OSCC, providing insights for diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Su Kyung Kuk
- Division of Biomedical Informatics, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kitae Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jae Il Lee
- Department of Oral Pathology, School of Dentistry and Dental Research, Seoul National University, Seoul, Republic of Korea
| | - KangMi Pang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
12
|
Wang J, Wang G, Hu T, Wang H, Zhou Y. Identification of an ADME-related gene for forecasting the prognosis and responding to immunotherapy in sarcomas. Eur J Med Res 2024; 29:45. [PMID: 38212774 PMCID: PMC10782529 DOI: 10.1186/s40001-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024] Open
Abstract
There are more than 170 subtypes of sarcomas (SARC), which pose a challenge for diagnosis and patient management. Relatively simple or complex karyotypes play an indispensable role in the early diagnosis and effective treatment of SARC. The genes related to absorption, distribution, metabolism, and excretion (ADME) of a drug can serve as prognostic biomarkers of cancer and potential drug targets. In this study, a risk score signature was created. The SARC cohort was downloaded from The Cancer Genome Atlas (TCGA) database, and divided into high-risk group and low-risk group according to the median value of risk score. Compared with high-risk group, low-risk group has a longer survival time, which is also verified in osteosarcoma cohort from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. In addition, the relationship between the signature and immunophenotypes, including status of immune cell infiltration and immune checkpoint expression, was explored. Then, we found that high-risk group is in immunosuppressive status. Finally, we verified that PPARD played a role as a carcinogen in osteosarcoma, which provided a direction for targeted treatment of osteosarcoma in the future. Generally speaking, the signature can not only help clinicians predict the prognosis of patients with SARC, but also provide a theoretical basis for developing more effective targeted drugs in the future.
Collapse
Affiliation(s)
- Jianlong Wang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guowei Wang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Tianrui Hu
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Hongyi Wang
- Medical College, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yong Zhou
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
13
|
Ying Y, Zhang W, Zhu H, Luo J, Xu X, Yang S, Zhao Y, Zhang Z. A novel m7G regulator-based methylation patterns in head and neck squamous cell carcinoma. Mol Carcinog 2023; 62:1902-1917. [PMID: 37642290 DOI: 10.1002/mc.23624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/17/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Abnormal RNA N7-methylguanosine (m7G) modification is known to contribute to effects on tumor occurrence and development. Nevertheless, the mechanisms of its function in immunoregulation, tumor microenvironment (TME) modulation, and tumor promotion remain largely unknown. A series of computer-aided bioinformatic analyses were conducted based on transcriptomic, single-cell sequence, and spatial transcriptomic data to determine the m7G modification patterns in head and neck squamous cell carcinoma (HNSCC). Consensus clustering approach was employed according to the expressions of 33 m7G regulators. ESTIMATE, CIBERSORT, and single sample gene set enrichment analysis algorithms were adopted to investigate the immune cell infiltration features. A prognostic model named m7Gscore was established. Seurat, SingleR, and Monocle2 were used to analyze the single-cell sequence profiling. STUtility was used to integrate multiple spatial transcriptomic datasets. Quantitative reverse transcription polymerase chain reaction, transwell, and wound-healing assay were performed to verify the oncogenes. Here, three different m7G modification patterns were highlighted in HNSCC patients, which were also related to various clinical manifestations and three representative immunophenotypes: immune-excluded, immune-desert, and inflamed, separately. Patients with lower m7Gscore were highlighted by higher immune cell infiltrations, better overall survival rates, lesser tumor mutation burden (TMB), lower sensitivities to target inhibitors therapies, and better immunotherapeutic response. Moreover, DCPS, EIF4E, EIF4E2, LSM1, NCBP2, NUDT1, and NUDT5 were identified to play critical roles in T-cell differentiation. Knockdown of LSM1/NUDT5 could restrain the malignancy of HNSCC cells. Collectively, quantitative assessment of m7G modification patterns in individual HNSCC patients could contribute to identifying more efficient immunotherapeutic approaches and improve the clinical outcome of HNSCC.
Collapse
Affiliation(s)
- Yukang Ying
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Haoran Zhu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jun Luo
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Xuhui Xu
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Suqing Yang
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Yue Zhao
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Zhenxing Zhang
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| |
Collapse
|
14
|
Zhang X, Ren Q, Li Z, Xia X, Zhang W, Qin Y, Wu D, Ren C. Exploration of the radiosensitivity-related prognostic risk signature in patients with glioma: evidence from microarray data. J Transl Med 2023; 21:618. [PMID: 37700319 PMCID: PMC10496232 DOI: 10.1186/s12967-023-04388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Gene expression signatures can be used as prognostic biomarkers in various types of cancers. We aim to develop a gene signature for predicting the response to radiotherapy in glioma patients. METHODS Radio-sensitive and radio-resistant glioma cell lines (M059J and M059K) were subjected to microarray analysis to screen for differentially expressed mRNAs. Additionally, we obtained 169 glioblastomas (GBM) samples and 5 normal samples from The Cancer Genome Atlas (TCGA) database, as well as 80 GBM samples and 4 normal samples from the GSE7696 set. The "DESeq2" R package was employed to identify differentially expressed genes (DEGs) between the normal brain samples and GBM samples. Combining the prognostic-related molecules identified from the TCGA, we developed a radiosensitivity-related prognostic risk signature (RRPRS) in the training set, which includes 152 patients with glioblastoma. Subsequently, we validated the reliability of the RRPRS in a validation set containing 616 patients with glioma from the TCGA database, as well as an internal validation set consisting of 31 glioblastoma patients from the Nanfang Hospital, Southern Medical University. RESULTS Based on the microarray and LASSO COX regression analysis, we developed a nine-gene radiosensitivity-related prognostic risk signature. Patients with glioma were divided into high- or low-risk groups based on the median risk score. The Kaplan-Meier survival analysis showed that the progression-free survival (PFS) of the high-risk group was significantly shorter. The signature accurately predicted PFS as assessed by time-dependent receiver operating characteristic curve (ROC) analyses. Stratified analysis demonstrated that the signature is specific to predict the outcome of patients who were treated using radiotherapy. Univariate and multivariate Cox regression analysis revealed that the predictor was an independent predictor for the prognosis of patients with glioma. The prognostic nomograms accompanied by calibration curves displayed the 1-, 2-, and 3-year PFS and OS in patients with glioma. CONCLUSION Our study established a new nine-gene radiosensitivity-related prognostic risk signature that can predict the prognosis of patients with glioma who received radiotherapy. The nomogram showed great potential to predict the prognosis of patients with glioma treated using radiotherapy.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qiannan Ren
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaolin Xia
- Department of Radiation Oncology, Yunfu People's Hospital, Yunfu, Guangdong, China
| | - Wan Zhang
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yue Qin
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Chen Ren
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|