1
|
Rui-Chang Z, Hui-Zi P, Lin Z. The causal relationships of granulocytes and melanoma skin cancer: A univariable and multivariable Mendelian randomization study. Skin Res Technol 2024; 30:e70007. [PMID: 39149884 PMCID: PMC11327865 DOI: 10.1111/srt.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Increasing evidence has revealed that granulocyte has a critical role in tumorigenesis and progression. In this study, Mendelian randomization (MR) analysis was utilized for estimating the causal association between neutrophil percentage and melanoma skin cancer, eosinophil percentage and melanoma skin cancer, basophil percentage and melanoma skin cancer, respectively. METHODS The Genome-Wide Association Study (GWAS) ids for melanoma skin cancer, neutrophil percentage, eosinophil percentage and basophil percentage were derived from Integrative Epidemiology Unit (IEU) Open GWAS database. The univariable MR (UVMR) analysis was conducted to estimate the risk using MR-Egger, weighted median, inverse variance weighted (IVW). In addition, sensitivity analysis was conducted to assess the reliability of UVMR results. Finally, the multivariable MR (MVMR) analysis was performed to investigate causality between neutrophil percentage and eosinophil percentage in the presence of both and melanoma skin cancer. RESULTS The UVMR indicated that neutrophil percentage and eosinophil percentage were significantly and causally related to melanoma skin cancer, with neutrophil percentage [p = 0.025, odds ratio (OR) = 1.002] as a risk factor and eosinophil percentage (p = 7.04E-06, OR = 0.997) as a protective factor. Moreover, MVMR analysis indicated eosinophil percentage remained the protective factor (p = 0.003, OR = 0.998), while the causality of neutrophil percentage and melanoma skin cancer became insignificant (p > 0.05). CONCLUSION The causal relationships of neutrophil percentage and melanoma skin cancer, eosinophil percentage and melanoma skin cancer were shown by this study, which provided a reference for subsequent research and treatment related to melanoma skin cancer.
Collapse
Affiliation(s)
- Zhang Rui-Chang
- Department of Cosmetic Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Peng Hui-Zi
- Department of Cosmetic Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Zhou Lin
- Department of Cosmetic Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| |
Collapse
|
2
|
Ruiz-Ojeda D, Guzmán-Martín CA, Bojalil R, Balderas XF, Paredes-González IS, González-Ramírez J, Torres-Rasgado E, Hernández-DíazCouder A, Springall R, Sánchez-Muñoz F. Long noncoding RNA MALAT1 in dermatologic disorders: a comprehensive review. Biomark Med 2024; 18:853-867. [PMID: 38982732 PMCID: PMC11497971 DOI: 10.1080/17520363.2024.2369044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Dermatologic disorders, affecting the integumentary system, involve diverse molecular mechanisms such as cell proliferation, apoptosis, inflammation and immune responses. Long noncoding RNAs, particularly Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), are crucial regulators of gene expression. MALAT1 influences inflammatory responses, immune cell function and signaling pathways, impacting various physiological and pathological processes, including dermatologic disorders. Dysregulation of MALAT1 is observed in skin conditions like psoriasis, atopic dermatitis and systemic lupus erythematosus. However, its precise role remains unclear. This review consolidates knowledge on MALAT1's impact on skin biology and pathology, emphasizing its potential diagnostic and therapeutic implications in dermatologic conditions.
Collapse
Affiliation(s)
- Dayanara Ruiz-Ojeda
- Posgrado en Medicina Interna, Hospital Central Sur de Alta Especialidad de Petróleos Mexicanos, Ciudad de México, C.P. 14140, México
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| | - Carlos A Guzmán-Martín
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, C.P. 04960, México
- Departamento de programas de investigación, Hospital Shriners para Niños México, Ciudad de México, C.P. 04600, México
| | - Rafael Bojalil
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, C.P. 04960, México
| | - Ximena F Balderas
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| | - Iris S Paredes-González
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, C.P. 14080, México
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali, Baja California, C.P. 21376, México
| | - Enrique Torres-Rasgado
- Facultad de Medicina, Cuerpo Académico de Medicina Interna (CA-160), Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000,México
| | - Adrián Hernández-DíazCouder
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, C.P. 06720, México
| | - Rashidi Springall
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| |
Collapse
|
3
|
Zhang M, Ju Y, Xue L, Zhao X, Xu X, Wu G, Bo H, Qin Z. Integration of single-cell and bulk RNA sequencing data reveals that CYTOR is a potential prognostic and immunotherapeutic response marker for skin cutaneous melanoma. J Cancer 2024; 15:3890-3902. [PMID: 38911384 PMCID: PMC11190755 DOI: 10.7150/jca.94823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/12/2024] [Indexed: 06/25/2024] Open
Abstract
Skin cutaneous melanoma (SKCM) is a highly malignant tumor that is prone to immune escape and distant metastasis. Immunotherapy is considered to be the best treatment for patients with SKCM. However, not all patients benefit from it. We observed a significant differential expression of the lncRNA CYTOR in patients with SKCM based on single-cell and bulk RNA sequencing data mining results. The results showed that compared to normal tissue lncRNA CYTOR expression was significantly upregulated in SKCM tissue. Subsequently, we validated this finding in clinical samples, and we also found that the expression of lncRNA CYTOR in SKCM was higher as it progressed. lncRNA CYTOR was differentially expressed in patients who responded to immunotherapy, suggesting that it may serve as a biomarker to predict the efficacy of SKCM immunotherapy. In-depth analysis revealed that lncRNA CYTOR expression was strongly correlated with immune cell infiltration, immune response, and immune checkpoint expression. Meanwhile, our experiments revealed that CYTOR affects SKCM cell invasion and clone formation and is associated with the activation of the EMT pathway. In summary, our findings illustrate, for the first time, the value of CYTOR as a potential prognostic and immunotherapeutic response marker in SKCM.
Collapse
Affiliation(s)
- Ming Zhang
- The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 220005, China
| | - Yikun Ju
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lei Xue
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xueheng Zhao
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410006, China
| | - Xuezheng Xu
- Department of Orthopaedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Geng Wu
- The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 220005, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410006, China
| | - Zailong Qin
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Genetic and Metabolic Central Laboratory, Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| |
Collapse
|
4
|
Zheng S, He A, Chen C, Gu J, Wei C, Chen Z, Liu J. Predicting immunotherapy response in melanoma using a novel tumor immunological phenotype-related gene index. Front Immunol 2024; 15:1343425. [PMID: 38571962 PMCID: PMC10987686 DOI: 10.3389/fimmu.2024.1343425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Melanoma is a highly aggressive and recurrent form of skin cancer, posing challenges in prognosis and therapy prediction. Methods In this study, we developed a novel TIPRGPI consisting of 20 genes using Univariate Cox regression and the LASSO algorithm. The high and low-risk groups based on TIPRGPI exhibited distinct mutation profiles, hallmark pathways, and immune cell infiltration in the tumor microenvironment. Results Notably, significant differences in tumor immunogenicity and TIDE were observed between the risk groups, suggesting a better response to immune checkpoint blockade therapy in the low-TIPRGPI group. Additionally, molecular docking predicted 10 potential drugs that bind to the core target, PTPRC, of the TIPRGPI signature. Discussion Our findings highlight the reliability of TIPRGPI as a prognostic signature and its potential application in risk classification, immunotherapy response prediction, and drug candidate identification for melanoma treatment. The "TIP genes" guided strategy presented in this study may have implications beyond melanoma and could be applied to other cancer types.
Collapse
Affiliation(s)
- Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Anqi He
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Chenxi Chen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue Cancers, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Chen
- Big Data and Artificial Intelligence Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue Cancers, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Su Z, Wang Y, Cao J, Ma J, Wang G, Ren H, Zhang Y, Sheng K, Zhu X, Wang Y. Identification and validation of non-coding RNA-mediated high expression of IQGAP3 in poor prognosis of lung adenocarcinoma. J Gene Med 2024; 26:e3664. [PMID: 38282143 DOI: 10.1002/jgm.3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The primary reason for tumor-related deaths worldwide is lung adenocarcinoma (LUAD). The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is crucial for contributing to tumor initiation and progression. However, the precise function and molecular mechanism of IQGAP3 in LUAD remain unknown. The present study aimed to investigate the expression, prognosis, mechanism and tumor immunity associated with IQGAP3 in LUAD. METHODS The relationship between IQGAP3 and the poor prognosis of LUAD was analyzed using The Cancer Genome Atlas (TCGA) database. This analysis was further validated on lung cancer tissues and cell lines. The function of IQGAP3 was investigated by silencing it in LUAD cell lines. To predict microRNA (miRNA) and long non-coding RNA associated with IQGAP3, the starBase database was utilized, and the predictions were verified by enhancing the function of miRNA. Finally, the relationship between IQGAP3 and tumor immunity was evaluated using Spearman's correlation analysis. RESULTS TCGA database revealed that higher levels of IQGAP3 were associated with advanced tumor stage, N stage and poor prognosis in LUAD patients. To confirm that, we conducted experiments on lung cancer tissues and cell lines and found that silencing IQGAP3 significantly inhibited tumor cell proliferation and migration. The expression of IQGAP3 showed a negative correlation with has-miR-101-3p and has-miR-135a-5p, whereas it showed a positive correlation with GSEC, AC005034.3 and TYMSOS. Furthermore, the introduction of miRNA-mimics into lung cancer cell resulted in a significant inhibition of cancer cell growth and migration. Following that, the level of IQGAP3 showed a positive correlation with the infiltration of immune cells in tumors. CONCLUSIONS These results reveal that IQGAP3 significantly promotes LUAD progression and could serve as a prognostic biomarker for LUAD. Furthermore, IQGAP3 is most likely regulated by the GSEC/TYMSOS-hsa-miR-101-3p axis and the AC005034.3-hsa-miR-135a-5p axis in LUAD.
Collapse
Affiliation(s)
- Ziwei Su
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Jialing Cao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Jie Ma
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, China
| | - Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Huijuan Ren
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yihan Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Xueying Zhu
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| |
Collapse
|
6
|
Diaz MJ, Fadil A, Tran JT, Batchu S, Root KT, Tran AX, Lucke-Wold B. Primary and Metastatic Cutaneous Melanomas Discriminately Enrich Several Ligand-Receptor Interactions. Life (Basel) 2023; 13:180. [PMID: 36676129 PMCID: PMC9865490 DOI: 10.3390/life13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Cutaneous melanoma remains a leading cancer with sobering post-metastasis mortality rates. To date, the ligand-receptor interactome of melanomas remains weakly studied despite applicability to anti-cancer drug discovery. Here we leverage established crosstalk methodologies to characterize important ligand-receptor pairs in primary and metastatic cutaneous melanoma. METHODS Bulk transcriptomic data, representing 470 cutaneous melanoma samples, was retrieved from the Broad Genome Data Analysis Center Firehose portal. Tumor and stroma compartments were computationally derived as a function of tumor purity estimates. Identification of preferential ligand-receptor interactions was achieved by relative crosstalk scoring of 1380 previously established pairs. RESULTS Metastatic cutaneous melanoma uniquely enriched PTH2-PTH1R for tumor-to-stroma signaling. The Human R-spondin ligand family was involved in 4 of the 15 top-scoring stroma-to-tumor interactions. Receptor ACVR2B was involved in 3 of the 15 top-scoring tumor-to-tumor interactions. CONCLUSIONS Numerous gene-level differences in ligand-receptor crosstalk between primary and metastatic cutaneous melanomas. Further investigation of notable pairings is warranted.
Collapse
Affiliation(s)
- Michael J. Diaz
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Angela Fadil
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jasmine T. Tran
- School of Medicine, University of Indiana, Indianapolis, IN 46202, USA
| | - Sai Batchu
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Kevin T. Root
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Andrew X. Tran
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|