1
|
Cherne MD, Snyder D, Sidar B, Blackwell K, Jenkins B, Huang S, Sebrell TA, Hedges JF, Spence JR, Chang CB, Wilking JN, Walk ST, Jutila MA, Loveday EK, Bimczok D. Strain- and vaccine-specific effects of serum antibodies in the protection of intestinal SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.24.25324570. [PMID: 40196264 PMCID: PMC11974977 DOI: 10.1101/2025.03.24.25324570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains a public health challenge worldwide. The gastrointestinal tract has emerged as an important site of infection and has been implicated as a reservoir for long-term infection, particularly for post-acute COVID-19 syndrome. However, whether vaccine-induced systemic antibodies can prevent intestinal infection with SARS-CoV-2 is unclear. Compared to Vero cells commonly used to assess SARS-CoV-2 neutralization, the intestinal epithelium has a functional interferon response and expresses higher levels of ACE2, enzymes, and antibody-binding Fc receptors that may impact SARS-CoV-2 immune elimination. Methods We evaluated the potential of antibodies from both naturally infected and vaccinated human subjects to inhibit SARS-CoV-2 infection of the intestinal epithelium. Serum samples were collected from human volunteers who had undergone natural infection with SARS-CoV-2 in 2020 (n=5) or who had received the Pfizer BNT162b2 COVID-19 vaccine (n=13). Banked sera collected in 2016 served as negative controls (n=2). SARS-CoV-2 (WA01, Delta or Omicron) was pre-treated with sera and then used to infect iPSC-derived human intestinal organoids (HIO) or Caco-2 colonic epithelial cells, and SARS-CoV-2 infection was quantified by plaque assay, PCR, or immunofluorescence (IF) after 48-96 h. Results Both HIOs and Caco-2 cells supported robust infection with SARS-CoV-2. In HIOs, pretreatment of SARS-CoV-2 with a high titer post-vaccine serum completely blocked replication of WA01. Similarly, sera from both naturally infected donors collected in 2020 and sera from individuals who had received a BNT162b2 vaccine significantly inhibited replication of the WA01 strain in Caco-2 cells. In contrast, none of the sera significantly inhibited infection with the Delta variant of SARS-CoV-2. For Omicron, only sera from individuals who had received an Omicron-based vaccine significantly inhibited infection with SARS-CoV-2 in the plaque assay. Across all virus types, sera from individuals who had received Omicron-based BNT162b2 boosters were the most effective at reducing infection in Caco-2 cells. Conclusion Our results suggest that vaccine-induced antibody responses to SARS-CoV-2 are protective in the gut. Our study also supports previous reports indicating that SARS-CoV-2 vaccines need to be adapted to circulating virus strains to convey full protection from infection.
Collapse
Affiliation(s)
- M D Cherne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - D Snyder
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - B Sidar
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
- Department of Chemical and Biological Engineering Montana State University Bozeman, MT
| | - K Blackwell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - B Jenkins
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - S Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - T A Sebrell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - J F Hedges
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - J R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - C B Chang
- Department of Chemical and Biological Engineering Montana State University Bozeman, MT
- Center for Biofilm Engineering Montana State University Bozeman, MT
- Department of Physiology and Biomedical Engineering Mayo Clinic Rochester, MN
| | - J N Wilking
- Department of Chemical and Biological Engineering Montana State University Bozeman, MT
- Center for Biofilm Engineering Montana State University Bozeman, MT
- Department of Physiology and Biomedical Engineering Mayo Clinic Rochester, MN
| | - S T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - M A Jutila
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - E K Loveday
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
- Department of Chemical and Biological Engineering Montana State University Bozeman, MT
| | - D Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
- Center for Biofilm Engineering Montana State University Bozeman, MT
| |
Collapse
|
2
|
Gentili V, Beltrami S, Cuffaro D, Cianci G, Maini G, Rizzo R, Macchia M, Rossello A, Bortolotti D, Nuti E. JG26 attenuates ADAM17 metalloproteinase-mediated ACE2 receptor processing and SARS-CoV-2 infection in vitro. Pharmacol Rep 2025; 77:260-273. [PMID: 39292373 PMCID: PMC11743353 DOI: 10.1007/s43440-024-00650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND ADAM17 is a metalloprotease implicated in the proteolysis of angiotensin-converting enzyme 2 (ACE2), known to play a critical role in the entry and spread of SARS-CoV-2. In this context, ADAM17 results as a potential novel target for controlling SARS-CoV-2 infection. METHODS In this study, we investigated the impact on ACE2 surface expression and the antiviral efficacy against SARS-CoV-2 infection of the selective ADAM17 inhibitor JG26 and its dimeric (compound 1) and glycoconjugate (compound 2) derivatives using Calu-3 human lung cells. RESULTS None of the compounds exhibited cytotoxic effects on Calu-3 cells up to a concentration of 25 µM. Treatment with JG26 resulted in partial inhibition of both ACE2 receptor shedding and SARS-CoV-2 infection, followed by compound 1. CONCLUSION JG26, an ADAM17 inhibitor, demonstrated promising antiviral activity against SARS-CoV-2 infection, likely attributed to reduced sACE2 availability, thus limiting viral dissemination.
Collapse
Affiliation(s)
- Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Giorgia Cianci
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Gloria Maini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
- Clinical Research Center, LTTA, University of Ferrara, Ferrara, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy.
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy.
| |
Collapse
|
3
|
Wimalawansa SJ. Unveiling the Interplay-Vitamin D and ACE-2 Molecular Interactions in Mitigating Complications and Deaths from SARS-CoV-2. BIOLOGY 2024; 13:831. [PMID: 39452140 PMCID: PMC11504239 DOI: 10.3390/biology13100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024]
Abstract
The interaction of the SARS-CoV-2 spike protein with membrane-bound angiotensin-converting enzyme-2 (ACE-2) receptors in epithelial cells facilitates viral entry into human cells. Despite this, ACE-2 exerts significant protective effects against coronaviruses by neutralizing viruses in circulation and mitigating inflammation. While SARS-CoV-2 reduces ACE-2 expression, vitamin D increases it, counteracting the virus's harmful effects. Vitamin D's beneficial actions are mediated through complex molecular mechanisms involving innate and adaptive immune systems. Meanwhile, vitamin D status [25(OH)D concentration] is inversely correlated with severity, complications, and mortality rates from COVID-19. This study explores mechanisms through which vitamin D inhibits SARS-CoV-2 replication, including the suppression of transcription enzymes, reduced inflammation and oxidative stress, and increased expression of neutralizing antibodies and antimicrobial peptides. Both hypovitaminosis D and SARS-CoV-2 elevate renin levels, the rate-limiting step in the renin-angiotensin-aldosterone system (RAS); it increases ACE-1 but reduces ACE-2 expression. This imbalance leads to elevated levels of the pro-inflammatory, pro-coagulatory, and vasoconstricting peptide angiotensin-II (Ang-II), leading to widespread inflammation. It also causes increased membrane permeability, allowing fluid and viruses to infiltrate soft tissues, lungs, and the vascular system. In contrast, sufficient vitamin D levels suppress renin expression, reducing RAS activity, lowering ACE-1, and increasing ACE-2 levels. ACE-2 cleaves Ang-II to generate Ang(1-7), a vasodilatory, anti-inflammatory, and anti-thrombotic peptide that mitigates oxidative stress and counteracts the harmful effects of SARS-CoV-2. Excess ACE-2 molecules spill into the bloodstream as soluble receptors, neutralizing and facilitating the destruction of the virus. These combined mechanisms reduce viral replication, load, and spread. Hence, vitamin D facilitates rapid recovery and minimizes transmission to others. Overall, vitamin D enhances the immune response and counteracts the pathological effects of SARS-CoV-2. Additionally, data suggests that widely used anti-hypertensive agents-angiotensin receptor blockers and ACE inhibitors-may lessen the adverse impacts of SARS-CoV-2, although they are less potent than vitamin D.
Collapse
|
4
|
Sun J, Edsfeldt A, Svensson J, Ruge T, Goncalves I, Swärd P. ADAM-17 Activity and Its Relation to ACE2: Implications for Severe COVID-19. Int J Mol Sci 2024; 25:5911. [PMID: 38892098 PMCID: PMC11172796 DOI: 10.3390/ijms25115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
There is a lack of studies aiming to assess cellular a disintegrin and metalloproteinase-17 (ADAM-17) activity in COVID-19 patients and the eventual associations with the shedding of membrane-bound angiotensin-converting enzyme 2 (mACE2). In addition, studies that investigate the relationship between ACE2 and ADAM-17 gene expressions in organs infected by SARS-CoV-2 are lacking. We used data from the Massachusetts general hospital COVID-19 study (306 COVID-19 patients and 78 symptomatic controls) to investigate the association between plasma levels of 33 different ADAM-17 substrates and COVID-19 severity and mortality. As a surrogate of cellular ADAM-17 activity, an ADAM-17 substrate score was calculated. The associations between soluble ACE2 (sACE2) and the ADAM-17 substrate score, renin, key inflammatory markers, and lung injury markers were investigated. Furthermore, we used data from the Genotype-Tissue Expression (GTEx) database to evaluate ADAM-17 and ACE2 gene expressions by age and sex in ages between 20-80 years. We found that increased ADAM-17 activity, as estimated by the ADAM-17 substrates score, was associated with COVID-19 severity (p = 0.001). ADAM-17 activity was also associated with increased mortality but did not reach statistical significance (p = 0.06). Soluble ACE2 showed the strongest positive correlation with the ADAM-17 substrate score, follow by renin, interleukin-6, and lung injury biomarkers. The ratio of ADAM-17 to ACE2 gene expression was highest in the lung. This study indicates that increased ADAM-17 activity is associated with severe COVID-19. Our findings also indicate that there may a bidirectional relationship between membrane-bound ACE2 shedding via increased ADAM-17 activity, dysregulated renin-angiotensin system (RAS) and immune signaling. Additionally, differences in ACE2 and ADAM-17 gene expressions between different tissues may be of importance in explaining why the lung is the organ most severely affected by COVID-19, but this requires further evaluation in prospective studies.
Collapse
Affiliation(s)
- Jiangming Sun
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
| | - Andreas Edsfeldt
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 00 Lund, Sweden
| | - Joel Svensson
- Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden;
| | - Toralph Ruge
- Department of Emergency and Internal Medicine, Skånes University Hospital, 214 28 Malmö, Sweden;
- Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Isabel Goncalves
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Per Swärd
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|
5
|
Pan M, Goncalves I, Edsfeldt A, Sun J, Swärd P. Genetic Predisposition to Elevated Levels of Circulating ADAM17 Is Associated with the Risk of Severe COVID-19. Int J Mol Sci 2023; 24:15879. [PMID: 37958866 PMCID: PMC10647461 DOI: 10.3390/ijms242115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
High levels of ADAM17 activity have emerged as an important mediator in severe COVID-19. This study aims to characterize eventual causal relationships between ADAM17 and COVID-19. Using Mendelian randomization analyses, we examined the causal effects of circulating ADAM17 on COVID-19 outcomes using summary statistics from large, genome-wide association studies of ADAM17 (up to 35,559 individuals) from the Icelandic Cancer Project and deCODE genetics, as well as critically ill COVID-19 patients (cases: 13,769; controls: 1,072,442), hospitalized COVID-19 patients (cases: 32,519; controls: 2,062,805) and reported SARS-CoV-2 infections (cases: 122,616; controls: 2,475,240) from the COVID-19 Host Genetics Initiative. The Mendelian randomization (MR) analyses demonstrated that a 1 standard deviation increase in genetically determined circulating ADAM17 (extracellular domain) was associated with an increased risk of developing critical ill COVID-19 (odds ratio [OR] = 1.26, 95% confidence interval [CI]:1.03-1.55). The multivariable MR analysis suggested a direct causal role of circulating ADAM17 (extracellular domain) in the risk of developing critical COVID-19 (OR = 1.09; 95% CI:1.01-1.17) when accounting for body mass index. No causal effect for the cytoplasmic domain of ADAM17 on COVID-19 was observed. Our results suggest that an increased genetic susceptibility to elevated levels of circulating ADAM17 (extracellular domain) is associated with a higher risk of suffering from severe COVID-19, strengthening the idea that the timely selective inhibition of ADAM17 could be a potential therapeutic target worthy of investigation.
Collapse
Affiliation(s)
- Mengyu Pan
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences, Lund University, Jan Waldenströms Gata 35, 205 02 Malmö, Sweden; (M.P.); (I.G.)
| | - Isabel Goncalves
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences, Lund University, Jan Waldenströms Gata 35, 205 02 Malmö, Sweden; (M.P.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Andreas Edsfeldt
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences, Lund University, Jan Waldenströms Gata 35, 205 02 Malmö, Sweden; (M.P.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 00 Lund, Sweden
| | - Jiangming Sun
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences, Lund University, Jan Waldenströms Gata 35, 205 02 Malmö, Sweden; (M.P.); (I.G.)
| | - Per Swärd
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopaedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden;
| |
Collapse
|
6
|
Hashimi M, Sebrell TA, Hedges JF, Snyder D, Lyon KN, Byrum SD, Mackintosh SG, Crowley D, Cherne MD, Skwarchuk D, Robison A, Sidar B, Kunze A, Loveday EK, Taylor MP, Chang CB, Wilking JN, Walk ST, Schountz T, Jutila MA, Bimczok D. Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection. Nat Commun 2023; 14:6882. [PMID: 37898615 PMCID: PMC10613288 DOI: 10.1038/s41467-023-42610-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB, Artibeus jamaicensis) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Upon infection with SARS-CoV-2, increased viral RNA and subgenomic RNA was detected, but no infectious virus was released, indicating that JFB organoids support only limited viral replication but not viral reproduction. SARS-CoV-2 replication was associated with significantly increased gene expression of type I interferons and inflammatory cytokines. Interestingly, SARS-CoV-2 also caused enhanced formation and growth of JFB organoids. Proteomics revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells mount successful antiviral interferon responses and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.
Collapse
Affiliation(s)
- Marziah Hashimi
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - T Andrew Sebrell
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Jodi F Hedges
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Deann Snyder
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Katrina N Lyon
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Stephanie D Byrum
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Samuel G Mackintosh
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
| | - Dan Crowley
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Michelle D Cherne
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - David Skwarchuk
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Amanda Robison
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Barkan Sidar
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
| | - Anja Kunze
- Montana State University, Electrical and Computer Engineering Department, Bozeman, MT, USA
| | - Emma K Loveday
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
| | - Matthew P Taylor
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Connie B Chang
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James N Wilking
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Seth T Walk
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology and Center of Vector-Borne Infectious Diseases, Colorado State University, Fort, Collins, CO, USA
| | - Mark A Jutila
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Diane Bimczok
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA.
- Center for Biofilm Engineering, Bozeman, MT, USA.
| |
Collapse
|
7
|
Chi M, Jie Y, Li Y, Wang D, Li M, Li D, E M, Li Y, Liu N, Gu A, Rong G. Novel structured ADAM17 small-molecule inhibitor represses ADAM17/Notch pathway activation and the NSCLC cells' resistance to anti-tumour drugs. Front Pharmacol 2023; 14:1189245. [PMID: 37456760 PMCID: PMC10338884 DOI: 10.3389/fphar.2023.1189245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Background and aims: The outcomes of current treatment for non-small cell lung cancer (NSCLC) are unsatisfactory and development of new and more efficacious therapeutic strategies are required. The Notch pathway, which is necessary for cell survival to avert apoptosis, induces the resistance of cancer cells to antitumour drugs. Notch pathway activation is controlled by the cleavage of Notch proteins/receptors mediated by A disintegrin and metalloproteinase 17 (ADAM17); therefore, ADAM17 is a reliable intervention target for anti-tumour therapy to overcome the drug resistance of cancer cells. This work aims to develop and elucidate the activation of Compound 2b, a novel-structured small-molecule inhibitor of ADAM17, which was designed and developed and its therapeutic efficacy in NSCLC was assessed via multi-assays. Methods and results: A lead compound for a potential inhibitor of ADAM17 was explored via pharmacophore modelling, molecular docking, and biochemical screening. It was augmented by substituting two important chemical groups [R1 and R2 of the quinoxaline-2,3-diamine (its chemical skeleton)]; subsequently, serial homologs of the lead compound were used to obtain anoptimized compound (2b) with high inhibitory activity compared with leading compound against ADAM17 to inhibit the cleavage of Notch proteins and the accumulation of the Notch intracellular domain in the nuclei of NSCLC cells. The inhibitory activity of compound 2b was demonstrated by quantitative polymerase chain reaction and Western blotting. The specificity of compound 2b on ADAM17 was confirmed via point-mutation. Compound 2b enhanced the activation of antitumor drugs on NSCLC cells, in cell lines and nude mice models, by targeting the ADAM17/Notch pathway. Conclusion: Compound 2b may be a promising strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Meng Chi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yamin Jie
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Duo Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Man Li
- Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Dan Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Yongwu Li
- Department of Nuclear Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Na Liu
- Department of Nuclear Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Anxin Gu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Guanghua Rong
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
9
|
Hashimi M, Sebrell T, Hedges J, Snyder D, Lyon K, Byrum S, Mackintosh SG, Cherne M, Skwarchuk D, Crowley D, Robison A, Sidar B, Kunze A, Loveday E, Taylor M, Chang C, Wilking J, Walk S, Schountz T, Jutila M, Bimczok D. Antiviral response mechanisms in a Jamaican Fruit Bat intestinal organoid model of SARS-CoV-2 infection. RESEARCH SQUARE 2022:rs.3.rs-2340919. [PMID: 36561186 PMCID: PMC9774215 DOI: 10.21203/rs.3.rs-2340919/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. JFB organoids were susceptible to SARS-CoV-2 infection, with increased viral RNA and subgenomic RNA detected in cell lysates and supernatants. Gene expression of type I interferons and inflammatory cytokines was induced in response to SARS-CoV-2 but not in response to TLR agonists. Interestingly, SARS-CoV-2 did not lead to cytopathic effects in JFB organoids but caused enhanced organoid growth. Proteomic analyses revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells can mount a successful antiviral interferon response and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.
Collapse
|
10
|
Padilla J, Manrique-Acevedo C, Martinez-Lemus LA. New insights into mechanisms of endothelial insulin resistance in type 2 diabetes. Am J Physiol Heart Circ Physiol 2022; 323:H1231-H1238. [PMID: 36331555 PMCID: PMC9705017 DOI: 10.1152/ajpheart.00537.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Insulin resistance in the vasculature is a hallmark of type 2 diabetes (T2D), and blunting of insulin-induced vasodilation is its primary consequence. Individuals with T2D exhibit a marked impairment in insulin-induced dilation in resistance arteries across vascular beds. Importantly, reduced insulin-stimulated vasodilation and blood flow to skeletal muscle limits glucose uptake and contributes to impaired glucose control in T2D. The study of mechanisms responsible for the suppressed vasodilatory effects of insulin has been a growing topic of interest for not only its association with glucose control and extension to T2D but also its relationship with cardiovascular disease development and progression. In this mini-review, we integrate findings from recent studies by our group with the existing literature focused on the mechanisms underlying endothelial insulin resistance in T2D.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Harte JV, Wakerlin SL, Lindsay AJ, McCarthy JV, Coleman-Vaughan C. Metalloprotease-Dependent S2′-Activation Promotes Cell–Cell Fusion and Syncytiation of SARS-CoV-2. Viruses 2022; 14:v14102094. [PMID: 36298651 PMCID: PMC9608990 DOI: 10.3390/v14102094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 cell–cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using in vitro cell–cell fusion assays. We also show that metalloproteases promote S2′-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern. In the presence of serine proteases, however, metalloprotease inhibition does not reduce spike protein-induced syncytiation and a combination of metalloprotease and serine protease inhibition is necessitated. Moreover, we show that the spike protein induces metalloprotease-dependent ectodomain shedding of the ACE2 receptor and that ACE2 shedding contributes to spike protein-induced syncytiation. These observations suggest a benefit to the incorporation of pharmacological inhibitors of metalloproteases into treatment strategies for patients with COVID-19.
Collapse
Affiliation(s)
- James V. Harte
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Samantha L. Wakerlin
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking & Disease Laboratory, Biosciences Institute, School of Biochemistry & Cell Biology, University College Cork, T12 YT20 Cork, Ireland
| | - Justin V. McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| | - Caroline Coleman-Vaughan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| |
Collapse
|