1
|
Wu C, Xu X, Shi Y, Li F, Zhang X, Huang Y, Xia D. Neutrophil Extracellular Trap Formation Model Induced by Monosodium Urate and Phorbol Myristate Acetate: Involvement in MAPK Signaling Pathways. Int J Mol Sci 2024; 26:143. [PMID: 39796001 PMCID: PMC11719704 DOI: 10.3390/ijms26010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production. The microstructure of neutrophils was observed by transmission electron microscopy, and the expression of key proteins was determined by Western blotting. Additionally, the effect of various inhibitors targeting the MAPK signaling pathway on NET formation was evaluated. They include the Ras inhibitor Salirasib, Raf inhibitor Vemurafenib, ERK inhibitor PD98059, and p38 MAPK inhibitor SB203580, as well as NADPH oxidase inhibitor DPI and neutrophil elastase inhibitor Alvelestat. The results showed that MSU and PMA triggered significant NET formation, which was accompanied by increased ROS levels, lactate dehydrogenase release, dsDNA, and IL-8. Notably, selective MAPK pathway inhibitors and DPI and Alvelestat, except for SB203580, effectively down-regulated these indicators. These data indicated that the activation of a signaling pathway involving Ras-Raf-ERK, which is dependent on ROS, is crucial for the induction of NET formation by MSU and PMA. Given the involvement of NETs in multiple pathologies, our findings could potentially serve as molecular targets for the intervention and treatment of crystal-related diseases, especially for gout.
Collapse
Affiliation(s)
- Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Xinru Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Yueyue Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| |
Collapse
|
2
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Tang H, Zhong Y, Wu Y, Huang Y, Liu Y, Chen J, Xi T, Wen Y, He T, Yang S, Liu F, Xiong R, Jin R. Increased neutrophil extracellular trap formation in oligoarticular, polyarticular juvenile idiopathic arthritis and enthesitis-related arthritis: biomarkers for diagnosis and disease activity. Front Immunol 2024; 15:1436193. [PMID: 39185410 PMCID: PMC11341361 DOI: 10.3389/fimmu.2024.1436193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Objective Neutrophil extracellular traps (NETs) are important factors in initiating and perpetuating inflammation. However, the role of NETs in different subtypes of juvenile idiopathic arthritis (JIA) has been rarely studied. Therefore, we aimed to explore the ability of JIA-derived neutrophils to release NETs and the effect of TNF-α (tumor necrosis factor-alpha) inhibitors on NET formation both in vitro and in vivo, and evaluate the associations of NET-derived products with clinical and immune-related parameters. Methods The ability of neutrophils to release NETs and the effect of adalimumab on NET formation was assessed via in vitro stimulation and inhibition studies. Plasma NET-derived products were detected to assess the incidence of NET formation in vivo. Furthermore, flow cytometry and western blotting were used to detect NET-associated signaling components in neutrophils. Results Compared to those derived from HCs, neutrophils derived from patients with oligoarticular-JIA, polyarticular-JIA and enthesitis-related arthritis were more prone to generate NETs spontaneously and in response to TNF-α or PMA in vitro. Excessive NET formation existed in peripheral circulation of JIA patients, and elevated plasma levels of NET-derived products (cell-free DNA and MPO-DNA complexes) could accurately distinguish JIA patients from HCs and were positively correlated with disease activity. Multiple linear regression analysis showed that erythrocyte sedimentation rate and TNF-α levels were independent variables and were positively correlated with cell-free DNA concentration. Notably, TNF-α inhibitors could effectively prevent NET formation both in vitro and in vivo. Moreover, the phosphorylation levels of NET-associated kinases in JIA-derived neutrophils were markedly increased. Conclusion Our data suggest that NETs might play pathogenic roles and may be involved in TNF-α-mediated inflammation in JIA. Circulating NET-derived products possess potential diagnostic and disease monitoring value. Furthermore, the preliminary results related to the molecular mechanisms of NET formation in JIA patients provide a theoretical basis for NET-targeted therapy.
Collapse
Affiliation(s)
- Hongxia Tang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yucheng Zhong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yali Wu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yanmei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Chen
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ting Xi
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yini Wen
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ting He
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shanshan Yang
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Fan Liu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Runji Xiong
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
GOTO S, MIKAMI O, NAGASAWA Y, WATANABE A. Bovine neutrophils stimulated with Streptococcus uberis induce neutrophil extracellular traps, and cause cytotoxicity and transcriptional upregulation of inflammatory cytokine genes in bovine mammary epithelial cells. J Vet Med Sci 2024; 86:141-149. [PMID: 38104974 PMCID: PMC10898994 DOI: 10.1292/jvms.23-0302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin (IL) -1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8, in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis-induced mastitis.
Collapse
Affiliation(s)
- Shinya GOTO
- Pathology and Production Disease Group, Division of Hygiene
Management, National Institute of Animal Health, National Agriculture and Food Research
Organization, Hokkaido, Japan
| | - Osamu MIKAMI
- Pathology and Production Disease Group, Division of Hygiene
Management, National Institute of Animal Health, National Agriculture and Food Research
Organization, Hokkaido, Japan
| | - Yuya NAGASAWA
- Pathology and Production Disease Group, Division of Hygiene
Management, National Institute of Animal Health, National Agriculture and Food Research
Organization, Hokkaido, Japan
| | - Atsushi WATANABE
- Pathology and Production Disease Group, Division of Hygiene
Management, National Institute of Animal Health, National Agriculture and Food Research
Organization, Hokkaido, Japan
| |
Collapse
|
5
|
Yang S, Li W, Bai X, Di Nunzio G, Fan L, Zhao Y, Ren L, Zhao R, Bian S, Liu M, Wei Y, Zhao D, Wang J. Ginseng-derived nanoparticles alleviate inflammatory bowel disease via the TLR4/MAPK and p62/Nrf2/Keap1 pathways. J Nanobiotechnology 2024; 22:48. [PMID: 38302938 PMCID: PMC10832157 DOI: 10.1186/s12951-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is closely linked to the homeostasis of the intestinal environment, and exosomes can be used to treat IBD due to their high biocompatibility and ability to be effectively absorbed by the intestinal tract. However, Ginseng-derived nanoparticles (GDNPs) have not been studied in this context and their mechanism of action remains unclear. Here, we investigated GDNPs ability to mediate intercellular communication in a complex inflammatory microenvironment in order to treat IBD. We found that GDNPs scavenge reactive oxygen species from immune cells and intestinal epithelial cells, inhibit the expression of pro-inflammatory factors, promote the proliferation and differentiation of intestinal stem cells, as well as enhancing the diversity of the intestinal flora. GDNPs significantly stabilise the intestinal barrier thereby promoting tissue repair. Overall, we proved that GDNPs can ameliorate inflammation and oxidative stress in vivo and in vitro, acting on the TLR4/MAPK and p62/Keap1/Nrf2 pathways, and exerting an anti-inflammatory and antioxidant effect. GDNPs mitigated IBD in mice by reducing inflammatory factors and improving the intestinal environment. This study offers new evidence of the potential therapeutic effects of GDNPs in the context of IBD, providing the conceptual ground for an alternative therapeutic strategy.
Collapse
Affiliation(s)
- Song Yang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Wenjing Li
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Xueyuan Bai
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Giada Di Nunzio
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Liangliang Fan
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Yueming Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Limei Ren
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Ronghua Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Shuai Bian
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Meichen Liu
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Yuchi Wei
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Jiawen Wang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China.
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
6
|
Li G, Liu L, Lu T, Sui Y, Zhang C, Wang Y, Zhang T, Xie Y, Xiao P, Zhao Z, Cheng C, Hu J, Chen H, Xue D, Chen H, Wang G, Kong R, Tan H, Bai X, Li Z, McAllister F, Li L, Sun B. Gut microbiota aggravates neutrophil extracellular traps-induced pancreatic injury in hypertriglyceridemic pancreatitis. Nat Commun 2023; 14:6179. [PMID: 37794047 PMCID: PMC10550972 DOI: 10.1038/s41467-023-41950-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Hypertriglyceridemic pancreatitis (HTGP) is featured by higher incidence of complications and poor clinical outcomes. Gut microbiota dysbiosis is associated with pancreatic injury in HTGP and the mechanism remains unclear. Here, we observe lower diversity of gut microbiota and absence of beneficial bacteria in HTGP patients. In a fecal microbiota transplantation mouse model, the colonization of gut microbiota from HTGP patients recruits neutrophils and increases neutrophil extracellular traps (NETs) formation that exacerbates pancreatic injury and systemic inflammation. We find that decreased abundance of Bacteroides uniformis in gut microbiota impairs taurine production and increases IL-17 release in colon that triggers NETs formation. Moreover, Bacteroides uniformis or taurine inhibits the activation of NF-κB and IL-17 signaling pathways in neutrophils which harness NETs and alleviate pancreatic injury. Our findings establish roles of endogenous Bacteroides uniformis-derived metabolic and inflammatory products on suppressing NETs release, which provides potential insights of ameliorating HTGP through gut microbiota modulation.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Yuhang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Can Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Dongbo Xue
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xuewei Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhibo Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China.
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China.
| |
Collapse
|
7
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|
8
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
9
|
Khan MZ, Wang J, Ma Y, Chen T, Ma M, Ullah Q, Khan IM, Khan A, Cao Z, Liu S. Genetic polymorphisms in immune- and inflammation-associated genes and their association with bovine mastitis resistance/susceptibility. Front Immunol 2023; 14:1082144. [PMID: 36911690 PMCID: PMC9997099 DOI: 10.3389/fimmu.2023.1082144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, is a contagious disease characterized by chemical and physical changes in milk and pathological changes in udder tissues. Depressed immunity and higher expression of inflammatory cytokines with an elevated milk somatic cell count can be observed during mastitis in dairy cattle. The use of somatic cell count (SCC) and somatic cell score (SCS) as correlated traits in the indirect selection of animals against mastitis resistance is in progress globally. Traditional breeding for mastitis resistance seems difficult because of the low heritability (0.10-0.16) of SCC/SCS and clinical mastitis. Thus, genetic-marker-selective breeding to improve host genetics has attracted considerable attention worldwide. Moreover, genomic selection has been found to be an effective and fast method of screening for dairy cattle that are genetically resistant and susceptible to mastitis at a very early age. The current review discusses and summarizes the candidate gene approach using polymorphisms in immune- and inflammation-linked genes (CD4, CD14, CD46, TRAPPC9, JAK2, Tf, Lf, TLRs, CXCL8, CXCR1, CXCR2, C4A, C5, MASP2, MBL1, MBL2, LBP, NCF1, NCF4, MASP2, A2M, and CLU, etc.) and their related signaling pathways (Staphylococcus aureus infection signaling, Toll-like receptor signaling, NF-kappa B signaling pathway, Cytokine-cytokine receptor, and Complement and coagulation cascades, etc.) associated with mastitis resistance and susceptibility phenotypic traits (IL-6, interferon-gamma (IFN-γ), IL17, IL8, SCS, and SCC) in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|