1
|
Lim L, Hosseinkhah N, Van Buskirk M, Berk A, Loheswaran G, Abbaspour Z, Karimpoor M, Smith A, Ho KF, Pushparaj A, Zahavi M, White A, Rubine J, Zidel B, Henderson C, Clayton RG, Tingley DR, Miller DJ, Karimpoor M, Hamblin MR. Photobiomodulation Treatment with a Home-Use Device for COVID-19: A Randomized Controlled Trial for Efficacy and Safety. Photobiomodul Photomed Laser Surg 2024; 42:393-403. [PMID: 38940733 DOI: 10.1089/pho.2023.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Background: Photobiomodulation therapy (PBMT) using devices to deliver red and/or near-infrared light to tissues has shown promising effects in clinical settings for respiratory diseases, including potential benefits in managing symptoms associated with COVID-19. Objective: To determine if at-home self-administered PBMT for patients with COVID-19 is safe and effective. Methods: This was a randomized controlled trial (RCT) carried out at home during the COVID-19 pandemic (September 2020 to August 2021). The treatment group self-administered the Vielight RX Plus PBMT device (635 nm intranasal and 810 nm chest LEDs) and were monitored remotely. Eligible patients scored 4-7 (out of 7) for severity on the Wisconsin Upper Respiratory Symptom Survey (WURSS-44). Patients were randomized equally to Control group receiving standard-of-care (SOC) only or Treatment group receiving SOC plus PBMT. The device was used for 20 min 2X/day for 5 days and, subsequently, once daily for 30 days. The primary end-point was time-to-recovery (days) based on WURSS-44 question 1, "How sick do you feel today?". Subgroup analysis was performed, and Kaplan-Meier and Cox Proportional Hazards analysis were employed. Results: One hundred and ninety-nine eligible patients (18-65 years old) were divided into two subgroups as follows: 136 patients with 0-7 days of symptoms at baseline and 63 patients with 8-12 days of symptoms. Those with 0-7 days of symptoms at baseline recovered significantly faster with PBMT. The median for Treatment group was 18 days [95% confidence interval (CI), 13-20] versus the Control group 21 days (95% CI, 15-28), p = 0.050. The treatment:control hazard ratio was 1.495 (95% CI, 0.996-2.243), p = 0.054. Patients with symptom duration ≥7 days did not show any significant improvement. No deaths or severe adverse events (SAEs) occurred in the Treatment group, whereas there was 1 death and 3 SAEs requiring hospitalization in the Control group. Conclusions: Patients with ≤7 days of COVID-19 symptoms recovered significantly faster with PBMT compared to SOC. Beyond 7 days, PBMT showed no superiority over SOC. Trial Registration: ClinicalTrials.gov NCT04418505.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| | | | | | - Andrea Berk
- Impact Clinical Trials Marketing & Management Services, Thornhill, ON, Canada
| | | | | | - Mahta Karimpoor
- Vielight Inc., Toronto, ON, Canada
- Stanford University, Palo Alto, California, USA
| | - Alison Smith
- Vielight Inc., Toronto, ON, Canada
- Roga Life Inc., Toronto, ON, Canada
| | | | - Abhiram Pushparaj
- Ironstone Product Development, Toronto, ON, Canada
- +ROI Regulatory Advisory, Grimsby, ON, Canada
| | | | | | - Jonathan Rubine
- MKR Clinical Research Consultants, Inc., Boynton Beach, Florida, USA
| | - Brian Zidel
- Malton Medical Clinic, Mississauga, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Aguida B, Chabi MM, Baouz S, Mould R, Bell JD, Pooam M, André S, Archambault D, Ahmad M, Jourdan N. Near-Infrared Light Exposure Triggers ROS to Downregulate Inflammatory Cytokines Induced by SARS-CoV-2 Spike Protein in Human Cell Culture. Antioxidants (Basel) 2023; 12:1824. [PMID: 37891903 PMCID: PMC10604116 DOI: 10.3390/antiox12101824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The leading cause of mortality from SARS-CoV-2 is an exaggerated host immune response, triggering cytokine storms, multiple organ failure and death. Current drug- and vaccine-based therapies are of limited efficacy against novel viral variants. Infrared therapy is a non-invasive and safe method that has proven effective against inflammatory conditions for over 100 years. However, its mechanism of action is poorly understood and has not received widespread acceptance. We herein investigate whether near-infrared (NIR) light exposure in human primary alveolar and macrophage cells could downregulate inflammatory cytokines triggered by the SARS-CoV-2 spike (S) protein or lipopolysaccharide (LPS), and via what underlying mechanism. Our results showed a dramatic reduction in pro-inflammatory cytokines within days of NIR light treatment, while anti-inflammatory cytokines were upregulated. Mechanistically, NIR light stimulated mitochondrial metabolism, induced transient bursts in reactive oxygen species (ROS) and activated antioxidant gene transcription. These, in turn, downregulated ROS and inflammatory cytokines. A causal relationship was shown between the induction of cellular ROS by NIR light exposure and the downregulation of inflammatory cytokines triggered by SARS-CoV-2 S. If confirmed by clinical trials, this method would provide an immediate defense against novel SARS-CoV-2 variants and other inflammatory infectious diseases.
Collapse
Affiliation(s)
- Blanche Aguida
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| | | | - Soria Baouz
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| | - Rhys Mould
- Research Centre for Optimal Health, University of Westminster, London W1W 6UW, UK (J.D.B.)
| | - Jimmy D. Bell
- Research Centre for Optimal Health, University of Westminster, London W1W 6UW, UK (J.D.B.)
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Sebastien André
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne University, INSERM, 75013 Paris, France
| | - Dominique Archambault
- Laboratoire CHArt, University of Paris 8-Vincennes-Saint-Denis, 93526 Saint-Denis, France
| | - Margaret Ahmad
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
- Department of Biology, Xavier University, 3800 Victory Parkway, Cincinnati, OH 45207, USA
| | - Nathalie Jourdan
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| |
Collapse
|
3
|
Wu C, Liu TCY, Duan R, Yang L. Photobiomodulation: A Potential Non-invasive Method to Alleviate Neurological Events Following COVID-19 Infection. Neurosci Bull 2023; 39:1595-1597. [PMID: 37191785 PMCID: PMC10186286 DOI: 10.1007/s12264-023-01064-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Affiliation(s)
- Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Shalaby RA, Qureshi MM, Khan MA, Salam SMA, Kwon HS, Lee KH, Chung E, Kim YR. Photobiomodulation therapy restores olfactory function impaired by photothrombosis in mouse olfactory bulb. Exp Neurol 2023:114462. [PMID: 37295546 DOI: 10.1016/j.expneurol.2023.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
An ischemic stroke typically accompanies numerous disorders ranging from somatosensory dysfunction to cognitive impairments, inflicting patients with various neurologic symptoms. Among pathologic outcomes, post-stroke olfactory dysfunctions are frequently observed. Despite the well-known prevalence, therapy options for such compromised olfaction are limited, likely due to the complexity of olfactory bulb architecture, which encompasses both the peripheral and central nervous systems. As photobiomodulation (PBM) emerged for treating ischemia-associated symptoms, the effectiveness of PBM on stroke-induced impairment of olfactory function was explored. Novel mouse models with olfactory dysfunctions were prepared using photothrombosis (PT) in the olfactory bulb on day 0. The post-PT PBM was performed daily from day 2 to day 7 by irradiating the olfactory bulb via an 808 nm laser with a fluence of 40 J/cm2 (325 mW/cm2 for 2 min per day). The buried food test (BFT) was used to score behavioral acuity in food-deprived mice to assess the olfactory function before PT, after PT, and after PBM. Histopathological examinations and cytokine assays were performed on the mouse brains harvested on day 8. The results from BFT were specific to an individual, with positive correlations between the baseline latency time measured before PT and its alteration at the ensuing stages for both the PT and PT + PBM groups. Also, the correlation analysis in both groups showed highly similar, significant positive relationships between the early and late latency time change independent of PBM, implicating a common recovery mechanism. Particularly, PBM treatment accelerated the recovery of impaired olfaction following PT by suppressing inflammatory cytokines and enhancing both glial and vascular factors (e.g., GFAP, IBA-1, and CD31). PBM therapy during the acute phase of ischemia improves the compromised olfactory function by modulating microenvironments and inflammation status of the affected tissue.
Collapse
Affiliation(s)
- Reham A Shalaby
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - Muhammad Mohsin Qureshi
- Division of Biophysics and Bioimaging, Princess Margret Cancer Center, Toronto, Ontario, Canada
| | - Mohd Afzal Khan
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - S M Abdus Salam
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, BioMedical Sciences Graduate Program (BMSGP), South Korea
| | - Hyuk Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, BioMedical Sciences Graduate Program (BMSGP), South Korea.
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea; AI Graduate School, Gwangju Institute of Science and Technology, South Korea.
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Dole M, Auboiroux V, Langar L, Mitrofanis J. A systematic review of the effects of transcranial photobiomodulation on brain activity in humans. Rev Neurosci 2023:revneuro-2023-0003. [PMID: 36927734 DOI: 10.1515/revneuro-2023-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
In recent years, transcranial photobiomodulation (tPBM) has been developing as a promising method to protect and repair brain tissues against damages. The aim of our systematic review is to examine the results available in the literature concerning the efficacy of tPBM in changing brain activity in humans, either in healthy individuals, or in patients with neurological diseases. Four databases were screened for references containing terms encompassing photobiomodulation, brain activity, brain imaging, and human. We also analysed the quality of the included studies using validated tools. Results in healthy subjects showed that even after a single session, tPBM can be effective in influencing brain activity. In particular, the different transcranial approaches - using a focal stimulation or helmet for global brain stimulation - seemed to act at both the vascular level by increasing regional cerebral blood flow (rCBF) and at the neural level by changing the activity of the neurons. In addition, studies also showed that even a focal stimulation was sufficient to induce a global change in functional connectivity across brain networks. Results in patients with neurological disease were sparser; nevertheless, they indicated that tPBM could improve rCBF and functional connectivity in several regions. Our systematic review also highlighted the heterogeneity in the methods and results generated, together with the need for more randomised controlled trials in patients with neurological diseases. In summary, tPBM could be a promising method to act on brain function, but more consistency is needed in order appreciate fully the underlying mechanisms and the precise outcomes.
Collapse
Affiliation(s)
- Marjorie Dole
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France
| | | | - Lilia Langar
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Clinatec, 38000 Grenoble, France
| | - John Mitrofanis
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France.,Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
6
|
Carroll JD. Photobiomodulation Literature Watch July 2022. Photobiomodul Photomed Laser Surg 2022; 40:826-828. [PMID: 36507768 DOI: 10.1089/photob.2022.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Hepburn J, Williams-Lockhart S, Bensadoun RJ, Hanna R. A Novel Approach of Combining Methylene Blue Photodynamic Inactivation, Photobiomodulation and Oral Ingested Methylene Blue in COVID-19 Management: A Pilot Clinical Study with 12-Month Follow-Up. Antioxidants (Basel) 2022; 11:2211. [PMID: 36358582 PMCID: PMC9686966 DOI: 10.3390/antiox11112211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 virus was first recognized in late 2019 and remains a significant threat. We therefore assessed the use of local methylene blue photodynamic viral inactivation (MB-PDI) in the oral and nasal cavities, in combination with the systemic anti-viral, anti-inflammatory and antioxidant actions of orally ingested methylene blue (MB) and photobiomodulation (PBM) for COVID-19 disease. The proposed protocol leverages the separate and combined effects of MB and 660nm red light emitted diode (LED) to comprehensively address the pathophysiological sequelae of COVID-19. A total of eight pilot subjects with COVID-19 disease were treated in the Bahamas over the period June 2021-August 2021, using a remote care program that was developed for this purpose. Although not a pre-requisite for inclusion, none of the subjects had received any COVID-19 vaccination prior to commencing the study. Clinical outcome assessment tools included serial cycle threshold measurements as a surrogate estimate of viral load; serial online questionnaires to document symptom response and adverse effects; and a one-year follow-up survey to assess long-term outcomes. All subjects received MB-PDI to target the main sites of viral entry in the nose and mouth. This was the central component of the treatment protocol with the addition of orally ingested MB and/or PBM based on clinical requirements. The mucosal surfaces were irradiated with 660 nm LED in a continuous emission mode at energy density of 49 J/cm2 for PDI and 4.9 J/cm2 for PBM. Although our pilot subjects had significant co-morbidities, extremely high viral loads and moderately severe symptoms during the Delta phase of the pandemic, the response to treatment was highly encouraging. Rapid reductions in viral loads were observed and negative PCR tests were documented within a median of 4 days. These laboratory findings occurred in parallel with significant clinical improvement, mostly within 12-24 h of commencing the treatment protocol. There were no significant adverse effects and none of the subjects who completed the protocol required in-patient hospitalization. The outcomes were similarly encouraging at one-year follow-up with virtual absence of "long COVID" symptoms or of COVID-19 re-infection. Our results indicate that the protocols may be a safe and promising approach to challenging COVID-19 disease. Moreover, due its broad spectrum of activity, this approach has the potential to address the prevailing and future COVID-19 variants and other infections transmitted via the upper respiratory tract. Extensive studies with a large cohort are warranted to validate our results.
Collapse
Affiliation(s)
- Juliette Hepburn
- Luminnova Health, 34 Harbour Bay Plaza, East Bay Street, Nassau P.O. Box N-1081, Bahamas
| | | | - René Jean Bensadoun
- Centre De Haute Energie, Department of Oncology Radiology, 10 Boulevard Pasteur, 06000 Nice, France
| | - Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Vaile Benedetto XV, 6, 16132 Genoa, Italy
- Department of Restorative Dental Sciences, UCL-Eastman Dental Institute, Faculty of Medical Sciences, Rockefeller Building, London WC1E 6DE, UK
- Department of Oral Surgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|