1
|
Grzyb M, Szymczak K, Bonikowski R. Essential Oil Fumigation Modulates Nutrient Content in Selected Mushrooms During Postharvest Storage. Int J Mol Sci 2025; 26:3939. [PMID: 40362182 PMCID: PMC12071996 DOI: 10.3390/ijms26093939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Mushrooms are highly perishable, with a shelf life of up to three days. Considering their richness in nutrients and unique taste and aroma, extending their shelf-life presents a valuable field of exploration. Essential oil fumigation, already studied in plants, could effectively preserve mushroom quality by slowing the loss of nutrients. This study focused on the fumigation of two wild mushroom species, Boletus edulis and Imleria badia, as well as one cultivated species, namely, Agaricus bisporus, treated with Foeniculum vulgare (fennel) and Picea abies (spruce) essential oils. The fumigated mushrooms were stored for 4 days under non-optimal conditions and analysed for their content of free sugars and sugar alcohols, total FFA, composition of all fatty acids, vitamins, and ergosterol. The results were analysed using a linear model with three-way variable interactions, ANOVA type III, and multivariate PCA. The key findings indicated that spruce and fennel essential oil fumigation assured a high content of vitamin C (40 and 32.78 mg/100 g d.w.) and ergosterol (0.265 and 0.257 g/100 g d.w.) in B. edulis and a high content of vitamin D2 (1.94 and 1.55 µg/100 g d.w.) in A. bisporus. The results demonstrated that treating mushrooms with essential oils can effectively modulate the nutritional value loss.
Collapse
Affiliation(s)
| | | | - Radosław Bonikowski
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (M.G.); (K.S.)
| |
Collapse
|
2
|
Song C, Zhou L, Xiong Y, Zhao L, Guo J, Zhang L, Han Y, Yang H, Xu Y, Zhao W, Shan S, Sun X, Zhang B, Guo J. Five-month real-ambient PM 2.5 exposure impairs learning in Brown Norway rats: Insights from multi omics-based analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118065. [PMID: 40147172 DOI: 10.1016/j.ecoenv.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
PM2.5, recognized as a potential pathogenic factor for nervous system diseases, remains an area with many unknowns, particularly regarding its effects on human health. After five-month real-ambient PM2.5 exposure, we observed no significant pathological damage to the lung, liver, spleen, or kidney tissues. However, PM2.5 exposure led to neuronal degeneration in the hippocampal CA1 region of Brown Norway (BN) rats. The level of IL-6, IL-13, IL-1β, IL-12, IL-4, GRO/KC, MIP-1α, CM-CSF significantly increased in lung lavage fluid (P < 0.05 for all). Notably, we detected a slight impairment in spatial learning ability, as evidenced by the Barnes maze training outcomes. There were no significant changes in the bacterial community in lung lavage fluid (P = 0.621), but the bacterial community in the gut significantly changed (P < 0.001), with more species identified (P < 0.05). The metabolomic analysis revealed 147 and 149 significantly changed metabolites in the pulmonary system and serum, respectively (P < 0.05). PM2.5 exposure caused a decrease in Nervonic acid (NA) in both the lung and serum, which likely contributed to spatial learning impairment (P < 0.01). The correlation between lung metabolites, gut bacterial species, and serum metabolites indicated that PM2.5 exposure likely impaired spatial learning through the lung-gut-brain axis pathway. Lung and serum metabolic disorders and intestinal microbial imbalance occurred in BN rats post-five-month real-ambient PM2.5 exposure. There were two potential ways that PM2.5 exposure caused the decline of spatial learning ability in wild-type BN rats: (1) PM2.5 exposure led to a significant decrease of neuroprotective Nervonic acid in lung and serum metabolites. (2) PM2.5 exposure likely led to reduced spatial learning ability through the lung-gut-brain axis.
Collapse
Affiliation(s)
- Chenchen Song
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Li Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Yi Xiong
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Lianlian Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China; Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China.
| | - Jindan Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Ling Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Yunlin Han
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Hu Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Yanfeng Xu
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Wenjie Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Shan Shan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiuping Sun
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China.
| | - Jianguo Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| |
Collapse
|
3
|
Li Q, Zhang F, Li X, Wang Q. Proteomic analysis of whole blood to investigate the therapeutic effects of nervonic acid on cerebral ischemia-reperfusion injury in rats. Front Cell Dev Biol 2025; 13:1546073. [PMID: 39936033 PMCID: PMC11810909 DOI: 10.3389/fcell.2025.1546073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction Blood proteomics offers a powerful approach for identifying disease-specific biomarkers. However, no reliable blood markers are currently available for the diagnosis stroke. Nervonic acid (NA), a vital long-chain monounsaturated fatty acid found in mammalian nervous tissue, shows promising therapeutic potential in neurological disorders. This study aimed to develop a reliable methodology for whole blood proteomics to identify early warning biomarkers and evaluate drug treatment efficacy. Methods After modeling via the classic thread embolization method, whole blood samples were collected from the rats. Morphological assessments of brain tissue indicated that NA significantly mitigated brain and neuronal damage in rats. The differential protein expression profile was analyzed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) whole blood proteomics. Results ZZZGene Ontology (GO) analysis revealed that, compared to ginkgo biloba extract (EGb), the proteins differentially expressed under NA intervention were predominantly involved in oxidative stress response and calcium-dependent adhesion processes. Key targets of NA in the treatment of middle cerebral artery occlusion (MCAO) models included ENO1, STAT3, NME2, VCL, and CCT3. Discussion This whole blood proteomic approach provides a comprehensive understanding of protein profiles associated with disease states, offering valuable insights into potential therapeutic targets and enabling the evaluation of NA and EGb intervention efficacy. Our findings underscore the protective effects of NA against cerebral ischemia-reperfusion injury and highlight its potential as a treatment for stroke.
Collapse
Affiliation(s)
- Qingqing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fengrong Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Jastrzębska J, Frankowska M, Wesołowska J, Filip M, Smaga I. Dietary Intervention with Omega-3 Fatty Acids Mitigates Maternal High-Fat Diet-Induced Behavioral and Myelin-Related Alterations in Adult Offspring. Curr Neuropharmacol 2025; 23:329-348. [PMID: 39492773 PMCID: PMC11808589 DOI: 10.2174/1570159x23666241014164940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Maternal high-fat diet (HFD) during pregnancy and lactation induces depression- like phenotype and provokes myelin-related changes in rat offspring in the prefrontal cortex (PFCTX), which persist even to adulthood. OBJECTIVE Due to the plasticity of the developing brain, it was decided to analyze whether depressionlike phenotype and myelin-related changes in the early lifetime induced by maternal HFD (60% energy from fat) could be reversed by the omega-3 fatty acid-enriched diet (Ω3D) given from the postweaning period until adulthood (63rd day of life) in offspring. METHODS We analyzed the effect of post-weaning Ω3D on the depressive-like phenotype (assessed by the forced swimming test) and myelin-related changes (measured using RT-qPCR, ELISA, and immunofluorescence staining) in the PFCTX of adult offspring. RESULTS Ω3D reversed increased immobility time in adult offspring induced by maternal HFD, without affecting the animals' locomotor activity. Molecularly, Ω3D normalized the reduced expression levels of myelin-oligodendrocyte glycoprotein (MOG), as well as myelin and lymphocyte protein (MAL) in males and MOG in females in the PFCTX, changes initially induced by maternal HFD. Additionally, Ω3D normalized the quantity of oligodendrocyte precursor cells and mature oligodendrocytes in the prelimbic, infralimbic, and cingulate cortex in males, which were reduced following maternal HFD exposure. In females, the Ω3D effect was less pronounced, with normalization of oligodendrocyte precursors occurring only in the infralimbic cortex. CONCLUSION These findings suggest that Ω3D may play a significant role in correcting behavioral and neurobiological changes caused by adverse prenatal conditions.
Collapse
Affiliation(s)
- Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Julita Wesołowska
- Laboratory of Microscopic Imaging, Maj Institute of Pharmacology Polish Academy of Sciences, CEPHARES, 12 Smętna Street, 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
5
|
Ma S, Lue Z, Xu G, Ma Y, Yuan W, Huang Z, Hu S, Yu L, Zhang X. Nervonic acid improves depression like behaviors and demyelination of medial prefrontal cortex in chronic restraint stress mice. Biochem Biophys Res Commun 2024; 733:150696. [PMID: 39288700 DOI: 10.1016/j.bbrc.2024.150696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric disorder characterized by depressed mood, behavioral despair and anhedonia. Demyelination in specific brain regions underlies the pathology of MDD, raising the alleviating demyelination as a potential strategy for MDD therapy. Nervonic acid (NA) has the potential to improve brain demyelination, offering benefits for various neurological disorders. However, its effects on depression remain undetermined. Mice were subjected to 14 days of chronic restraint stress (CRS) to induce depression-like behaviors, and were injected with NA (70 mg/kg) daily. The administration of NA significantly improved depressive-like behaviors in CRS mice. CRS led to significant demyelination in the medial prefrontal cortex (mPFC), which were reversed by NA treatment. In addition, NA ameliorated the upregulation of inflammatory cytokines and downregulation of brain-derived neurotrophic factor, improved the alternations in axonal spines observed in the mPFC of CRS mice. Our results highlighted the potential of NA as an antidepressant, with its benefits likely attributed to its effects in alleviating demyelination in the mPFC.
Collapse
Affiliation(s)
- Shijia Ma
- Institute of Pharmacology and Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhengwei Lue
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Genghua Xu
- Institute of Pharmacology and Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yun Ma
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Wenyue Yuan
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Zhenhui Huang
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Songhui Hu
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Lushan Yu
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China; Institute of Drug Metabolism and Pharmaceutical Analysis, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiangnan Zhang
- Institute of Pharmacology and Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China; Jinhua Institute of Zhejiang University, 321299, Jinhua, China.
| |
Collapse
|
6
|
Zheng W, Xu G, Lue Z, Zhou X, Wang N, Ma Y, Yuan W, Yu L, Zhu D, Zhang X. Nervonic acid protects against oligodendrocytes injury following chronic cerebral hypoperfusion in mice. Eur J Pharmacol 2024; 982:176932. [PMID: 39182543 DOI: 10.1016/j.ejphar.2024.176932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) has been acknowledged as a potential contributor to cognitive dysfunction and brain injury, causing progressive demyelination of white matter, oligodendrocytes apoptosis and microglia activation. Nervonic acid (NA), a naturally occurring fatty acid with various pharmacological effects, has been found to alleviate neurodegeneration. Nonetheless, evidence is still lacking on whether NA can protect against neurological dysfunction resulting from CCH. To induce CCH in mice, we employed the right unilateral common carotid artery occlusion (rUCCAO) method, followed by oral administration of NA daily for 28 days after the onset of hypoperfusion. We found that NA ameliorated cognitive function, as evidenced by improved performance of NA-treated mice in both novel object recognition test and Morris water maze test. Moreover, NA mitigated demyelination and loss of oligodendrocytes in the corpus callosum and hippocampus of rUCCAO-treated mice, and prevented oligodendrocyte apoptosis. Furthermore, NA protected primary cultured murine oligodendrocytes against oxygen-glucose deprivation (OGD)-induced cell death in a concentration-dependent manner. These findings indicated that NA promotes oligodendrocyte maturation both in vivo and in vitro. Our findings suggest that NA offers protective effects against cerebral hypoperfusion, highlighting its potential as a promising treatment for CCH and related neurological disorders.
Collapse
Affiliation(s)
- Wanqing Zheng
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Genghua Xu
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhengwei Lue
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Xinyu Zhou
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ning Wang
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Yun Ma
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Wenyue Yuan
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China; Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Danyan Zhu
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China; Institute of Drug Metabolism and Pharmaceutical Analysis, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
7
|
Lu W, Wen J. Crosstalk Among Glial Cells in the Blood-Brain Barrier Injury After Ischemic Stroke. Mol Neurobiol 2024; 61:6161-6174. [PMID: 38279077 DOI: 10.1007/s12035-024-03939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Blood-brain barrier (BBB) is comprised of brain microvascular endothelial cells (ECs), astrocytes, perivascular microglia, pericytes, neuronal processes, and the basal lamina. As a complex and dynamic interface between the blood and the central nervous system (CNS), BBB is responsible for transporting nutrients essential for the normal metabolism of brain cells and hinders many toxic compounds entering into the CNS. The loss of BBB integrity following stroke induces tissue damage, inflammation, edema, and neural dysfunction. Thus, BBB disruption is an important pathophysiological process of acute ischemic stroke. Understanding the mechanism underlying BBB disruption can uncover more promising biological targets for developing treatments for ischemic stroke. Ischemic stroke-induced activation of microglia and astrocytes leads to increased production of inflammatory mediators, containing chemokines, cytokines, matrix metalloproteinases (MMPs), etc., which are important factors in the pathological process of BBB breakdown. In this review, we discussed the current knowledges about the vital and dual roles of astrocytes and microglia on the BBB breakdown during ischemic stroke. Specifically, we provided an updated overview of phenotypic transformation of microglia and astrocytes, as well as uncovered the crosstalk among astrocyte, microglia, and oligodendrocyte in the BBB disruption following ischemic stroke.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Namiecinska M, Piatek P, Lewkowicz P. Nervonic Acid Synthesis Substrates as Essential Components in Profiled Lipid Supplementation for More Effective Central Nervous System Regeneration. Int J Mol Sci 2024; 25:3792. [PMID: 38612605 PMCID: PMC11011827 DOI: 10.3390/ijms25073792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Central nervous system (CNS) damage leads to severe neurological dysfunction as a result of neuronal cell death and axonal degeneration. As, in the mature CNS, neurons have little ability to regenerate their axons and reconstruct neural loss, demyelination is one of the hallmarks of neurological disorders such as multiple sclerosis (MS). Unfortunately, remyelination, as a regenerative process, is often insufficient to prevent axonal loss and improve neurological deficits after demyelination. Currently, there are still no effective therapeutic tools to restore neurological function, but interestingly, emerging studies prove the beneficial effects of lipid supplementation in a wide variety of pathological processes in the human body. In the future, available lipids with a proven beneficial effect on CNS regeneration could be included in supportive therapy, but this topic still requires further studies. Based on our and others' research, we review the role of exogenous lipids, pointing to substrates that are crucial in the remyelination process but are omitted in available studies, justifying the properly profiled supply of lipids in the human diet as a supportive therapy during CNS regeneration.
Collapse
Affiliation(s)
- Magdalena Namiecinska
- Department of Immunogenetics, Medical University of Lodz, Pomorska 251/A4 Street, 92-213 Lodz, Poland; (P.P.); (P.L.)
| | | | | |
Collapse
|
9
|
Lu Y, Saibro-Girardi C, Fitz NF, McGuire MR, Ostach MA, Mamun-Or-Rashid ANM, Lefterov I, Koldamova R. Multi-transcriptomics reveals brain cellular responses to peripheral infection in Alzheimer's disease model mice. Cell Rep 2023; 42:112785. [PMID: 37436901 PMCID: PMC10530196 DOI: 10.1016/j.celrep.2023.112785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/03/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Peripheral inflammation has been linked to various neurodegenerative disorders, including Alzheimer's disease (AD). Here we perform bulk, single-cell, and spatial transcriptomics in APP/PS1 mice intranasally exposed to Staphylococcus aureus to determine how low-grade peripheral infection affects brain transcriptomics and AD-like pathology. Chronic exposure led to increased amyloid plaque burden and plaque-associated microglia, significantly affecting the transcription of brain barrier-associated cells, which resulted in barrier leakage. We reveal cell-type- and spatial-specific transcriptional changes related to brain barrier function and neuroinflammation during the acute infection. Both acute and chronic exposure led to brain macrophage-associated responses and detrimental effects in neuronal transcriptomics. Finally, we identify unique transcriptional responses at the amyloid plaque niches following acute infection characterized by higher disease-associated microglia gene expression and a larger effect on astrocytic or macrophage-associated genes, which could facilitate amyloid and related pathologies. Our findings provide important insights into the mechanisms linking peripheral inflammation to AD pathology.
Collapse
Affiliation(s)
- Yi Lu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Carolina Saibro-Girardi
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nicholas Francis Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mikayla Ranae McGuire
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mary Ann Ostach
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - A N M Mamun-Or-Rashid
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
10
|
Stańdo-Retecka M, Piatek P, Namiecinska M, Bonikowski R, Lewkowicz P, Lewkowicz N. Clinical and microbiological outcomes of subgingival instrumentation supplemented with high-dose omega-3 polyunsaturated fatty acids in periodontal treatment - a randomized clinical trial. BMC Oral Health 2023; 23:290. [PMID: 37179297 PMCID: PMC10182874 DOI: 10.1186/s12903-023-03018-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
PURPOSE This study aimed to evaluate the impact of dietary supplementation with omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) combined with scaling and root planing (SRP) in untreated periodontitis stage III and IV. METHODS Forty patients were randomly assigned to the test group receiving SRP plus omega-3 PUFAs (n = 20) or control group receiving SRP alone (n = 20). Clinical changes of pocket probing depths (PD), clinical attachment level (CAL), bleeding on probing (BOP) and rates of closed pockets (PPD ≤ 4 mm without BOP) were evaluated at baseline and after 3 and 6 months. Phorphyromonas gingivalis, Tanarella forsythia, Treponema denticola and Aggregatibacter actinomycetemcomitans counts were analysed at baseline and at 6 months. Serum was subjected to lipid gas chromatography/mass spectrometry analysis at baseline and at 6 months. RESULTS Significant improvement of all clinical parameters at 3 and 6 months was observed in both groups. For the primary outcome "change of mean PD," no significant difference was detected between the groups. Patients treated with omega-3 PUFAs demonstrated significantly lower rates of BOP, higher gain of CAL and higher number of closed pockets at 3 months in comparison to the control group. After 6 months, no clinical differences between the groups were found, with the exception of lower BOP rates. Moreover, in the test group, the number of key periodontal bacteria was significantly lower than in the control group at 6 months. Increased proportions of serum n-3 PUFAs and decreased proportions of n-6 PUFAs were detected at 6 months in the patients from the test group. CONCLUSION High-dose omega-3 PUFA intake during non-surgical treatment of periodontitis results in short-term clinical and microbiological benefits. The study protocol was approved by the ethical committee of Medical University of Lodz (reference number RNN/251/17/KE) and registered at clinicaltrials.gov (NCT04477395) on 20/07/2020.
Collapse
Affiliation(s)
- Mirella Stańdo-Retecka
- Department of Periodontology and Oral Diseases, Medical University of Lodz, Ul. Pomorska 251, 92-213 Lodz, Poland
| | - Paweł Piatek
- Department of Immunogenetics, Medical University of Lodz, Ul. Pomorska 251/A4, 92-213 Lodz, Poland
| | - Magdalena Namiecinska
- Department of Immunogenetics, Medical University of Lodz, Ul. Pomorska 251/A4, 92-213 Lodz, Poland
| | - Radosław Bonikowski
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Ul. Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Przemyslaw Lewkowicz
- Department of Immunogenetics, Medical University of Lodz, Ul. Pomorska 251/A4, 92-213 Lodz, Poland
| | - Natalia Lewkowicz
- Department of Periodontology and Oral Diseases, Medical University of Lodz, Ul. Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
11
|
Maruyama T, Tanabe S, Uyeda A, Suzuki T, Muramatsu R. Free fatty acids support oligodendrocyte survival in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 2023; 17:1081190. [PMID: 37252191 PMCID: PMC10213402 DOI: 10.3389/fncel.2023.1081190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the white matter degeneration. Although changes in blood lipids are involved in the pathogenesis of neurological diseases, the pathological role of blood lipids in ALS remains unclear. Methods and results We performed lipidome analysis on the plasma of ALS model mice, mutant superoxide dismutase 1 (SOD1G93A) mice, and found that the concentration of free fatty acids (FFAs), including oleic acid (OA) and linoleic acid (LA), decreased prior to disease onset. An in vitro study revealed that OA and LA directly inhibited glutamate-induced oligodendrocytes cell death via free fatty acid receptor 1 (FFAR1). A cocktail containing OA/LA suppressed oligodendrocyte cell death in the spinal cord of SOD1G93A mice. Discussion These results suggested that the reduction of FFAs in the plasma is a pathogenic biomarker for ALS in the early stages, and supplying a deficiency in FFAs is a potential therapeutic approach for ALS by preventing oligodendrocyte cell death.
Collapse
Affiliation(s)
- Takashi Maruyama
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacoscience, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Pharmacoscience, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
12
|
Hu X, Geng P, Zhao X, Wang Q, Liu C, Guo C, Dong W, Jin X. The NG2-glia is a potential target to maintain the integrity of neurovascular unit after acute ischemic stroke. Neurobiol Dis 2023; 180:106076. [PMID: 36921779 DOI: 10.1016/j.nbd.2023.106076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The neurovascular unit (NVU) plays a critical role in health and disease. In the current review, we discuss the critical role of a class of neural/glial antigen 2 (NG2)-expressing glial cells (NG2-glia) in regulating NVU after acute ischemic stroke (AIS). We first introduce the role of NG2-glia in the formation of NVU during development as well as aging-induced damage to NVU and accompanying NG2-glia change. We then discuss the reciprocal interactions between NG2-glia and the other component cells of NVU, emphasizing the factors that could influence NG2-glia. Damage to the NVU integrity is the pathological basis of edema and hemorrhagic transformation, the most dreaded complication after AIS. The role of NG2-glia in AIS-induced NVU damage and the effect of NG2-glia transplantation on AIS-induced NVU damage are summarized. We next discuss the role of NG2-glia and the effect of NG2-glia transplantation in oligodendrogenesis and white matter repair as well as angiogenesis which is associated with the outcome of the patients after AIS. Finally, we review the current strategies to promote NG2-glia proliferation and differentiation and propose to use the dental pulp stem cells (DPSC)-derived exosome as a promising strategy to reduce AIS-induced injury and promote repair through maintaining the integrity of NVU by regulating endogenous NG2-glia proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyun Zhao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Changqing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Wen Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|