1
|
Zhang MJ, Wen Y, Sun ZJ. The impact of metabolic reprogramming on tertiary lymphoid structure formation: enhancing cancer immunotherapy. BMC Med 2025; 23:217. [PMID: 40223062 PMCID: PMC11995586 DOI: 10.1186/s12916-025-04037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has achieved unprecedented success in the field of cancer therapy. However, its potential is constrained by a low therapeutic response rate. MAIN BODY Tertiary lymphoid structure (TLS) plays a crucial role in antitumor immunity and is associated with a good prognosis. Metabolic reprogramming, as a hallmark of the tumor microenvironment, can influence tumor immunity and promote the formation of follicular helper T cells and germinal centers. However, many current studies focus on the correlation between metabolism and TLS formation factors, and there is insufficient direct evidence to suggest that metabolism drives TLS formation. This review provided a comprehensive summary of the relationship between metabolism and TLS formation, highlighting glucose metabolism, lipid metabolism, amino acid metabolism, and vitamin metabolism. CONCLUSIONS In the future, an in-depth exploration of how metabolism affects cell interactions and the role of microorganisms in TLS will significantly advance our understanding of metabolism-enhanced antitumor immunity.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Yan Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Jones PC, Von Hoff DD. Vitamin A Metabolism and Resistance of Hepatic Metastases to Immunotherapy. Mol Cancer Ther 2025; 24:345-353. [PMID: 39363636 PMCID: PMC11876961 DOI: 10.1158/1535-7163.mct-24-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
The liver is an immune-tolerant organ, allowing for organ transplantation with less immune suppression compared with other organs. It also provides fertile soil for tumor metastases, which tend to be more resistant to checkpoint blockade immunotherapy than metastases in other organs. This resistance may result from the sum of incremental evolutionary adaptions in various cell types to prevent overaction to antigens absorbed from the gut into the portal circulation or it might involve a central mechanism. Here, we propose that metabolism of vitamin A, which is highly concentrated in the liver, is a root source of tolerance and resistance of hepatic metastases to checkpoint blockade. Suppression of retinoic acid synthesis from vitamin A with disulfiram may mitigate tolerance and produce enhanced immunotherapy treatment results for patients with liver metastases.
Collapse
Affiliation(s)
| | - Daniel D. Von Hoff
- HonorHealth Research Institute (HHRI), Scottsdale, Arizona
- Translational Genomics Research Institute (TGen) a Part of City of Hope, Phoenix, Arizona
| |
Collapse
|
3
|
Kacemi R, Campos MG. Bee Pollen Phytochemicals and Nutrients as Unequaled Pool of Epigenetic Regulators: Implications for Age-Related Diseases. Foods 2025; 14:347. [PMID: 39941940 PMCID: PMC11816923 DOI: 10.3390/foods14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Bee pollen is characterized by an exceptional diversity and abundance of micronutrients and bioactive phytochemicals. This richness remains very sparsely investigated, but accumulating evidence strongly supports a promising future for bee pollen in human nutrition and medicine. Epigenetic regulation is among the most compelling biomedical topics that remain completely untapped in bee pollen and bee derivative research. In our current research, we identified numerous ubiquitous compounds that are consistently present in this matrix, regardless of its botanical and geographical origins, and that have been well studied and documented as epigenetic regulators in recent years. Given the relative newness of both bee pollen biomedical research and epigenetic studies within nutritional, pharmaceutical, and medical sciences, this review aims to bridge these valuable fields and advance related experimental investigations. To the best of our knowledge, this is the first work that has aimed to comprehensively investigate the epigenetic modulatory potential of bee pollen compounds. Our findings have also unveiled several intriguing phenomena, such as a dual effect of the same compound depending on the cellular context or the effect of some compounds on the cross-generational heritability of epigenetic traits. Although experimental studies of epigenetic regulation by bee pollen as a whole or by its extract are still lacking, our current study clearly indicates that this research avenue is very promising and worth further investigations. We hope that our current work constitutes a foundational cornerstone of future investigations for this avenue of research.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
4
|
Peng X, Zheng J, Liu T, Zhou Z, Song C, Geng Y, Wang Z, Huang Y. Tumor Microenvironment Heterogeneity, Potential Therapeutic Avenues, and Emerging Therapies. Curr Cancer Drug Targets 2024; 24:288-307. [PMID: 37537777 DOI: 10.2174/1568009623666230712095021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE This review describes the comprehensive portrait of tumor microenvironment (TME). Additionally, we provided a panoramic perspective on the transformation and functions of the diverse constituents in TME, and the underlying mechanisms of drug resistance, beginning with the immune cells and metabolic dynamics within TME. Lastly, we summarized the most auspicious potential therapeutic strategies. RESULTS TME is a unique realm crafted by malignant cells to withstand the onslaught of endogenous and exogenous therapies. Recent research has revealed many small-molecule immunotherapies exhibiting auspicious outcomes in preclinical investigations. Furthermore, some pro-immune mechanisms have emerged as a potential avenue. With the advent of nanosystems and precision targeting, targeted therapy has now transcended the "comfort zone" erected by cancer cells within TME. CONCLUSION The ceaseless metamorphosis of TME fosters the intransigent resilience and proliferation of tumors. However, existing therapies have yet to surmount the formidable obstacles posed by TME. Therefore, scientists should investigate potential avenues for therapeutic intervention and design innovative pharmacological and clinical technologies.
Collapse
Affiliation(s)
- Xintong Peng
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jingfan Zheng
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Tianzi Liu
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ziwen Zhou
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chen Song
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yan Geng
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zichuan Wang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yan Huang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
5
|
Zhang W, Peng Q, Zhang X, Guo J, Tong H, Li S. Vitamin A Promotes the Repair of Mice Skeletal Muscle Injury through RARα. Nutrients 2023; 15:3674. [PMID: 37686706 PMCID: PMC10490340 DOI: 10.3390/nu15173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Vitamin A (VitA) is an important fat-soluble vitamin which plays an important role in cell growth and individual development. However, the effect of VitA on the repair process of muscle injury and its molecular mechanism are still unclear. In this study, VitA and RA were first added to the culture medium of differentiated cells. We then detected cell differentiation marker proteins and myotube fusion. Moreover, the effects of VitA on RARα expression and nuclear translocation were further examined. The results showed that VitA significantly promoted the differentiation of C2C12, and the expression of RARα was significantly increased. Furthermore, VitA was injected into skeletal muscle injury in mice. HE staining and Western Blot results showed that VitA could significantly accelerate the repair of skeletal muscle injury and VitA increase the expression of RARα in mice. This study provides a theoretical basis for elucidating the regulation mechanism of VitA-mediated muscle development and the development of therapeutic drugs for muscle diseases in animals.
Collapse
Affiliation(s)
- Wenjia Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Qingyun Peng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxu Guo
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Huili Tong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Claiborne MD. Manipulation of metabolic pathways to promote stem-like and memory T cell phenotypes for immunotherapy. Front Immunol 2023; 13:1061411. [PMID: 36741362 PMCID: PMC9889361 DOI: 10.3389/fimmu.2022.1061411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Utilizing the immune system's capacity to recognize and kill tumor cells has revolutionized cancer therapy in recent decades. Phenotypic study of antitumor T cells supports the principle that superior tumor control is achieved by cells with more long-lived memory or stem-like properties as compared to terminally differentiated effector cells. In this Mini-Review, we explore recent advances in profiling the different metabolic programs that both generate and define subsets of memory T cells. We additionally discuss new experimental approaches that aim to maximize the durability and sustained antitumor response associated with memory T cells within the unique immunosuppressive conditions of the tumor microenvironment, such as engineered attempts to overcome hypoxia-induced changes in mitochondrial function, the inhibitory effects of tumor metabolites, and exploitation of more recently-defined metabolic pathways controlling T cell memory fate such as glycogen metabolism.
Collapse
|