1
|
Jo HH, Lee MY, Ha SE, Yeom DH, Kim YS. Alteration in gut microbiota after colonoscopy: proposed mechanisms and the role of probiotic interventions. Clin Endosc 2025; 58:25-39. [PMID: 39219335 PMCID: PMC11837576 DOI: 10.5946/ce.2024.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
Colonoscopy, a widely used procedure for diagnosing and treating colonic diseases, induces transient gastrointestinal symptoms and alterations in the gut microbiota. This review comprehensively examines the evidence on alterations in the gut microbiota following colonoscopy and their possible mechanisms. Factors such as rapid colonic evacuation, increased osmolality, and mucus thinning caused by bowel preparation and exposure to oxygen during the procedure contribute to these alterations. Typically, the alterations revert to the baseline within a short time. However, their long-term implications remain unclear, necessitating further investigation. Split-dose bowel preparation and CO2 insufflation during the procedure result in fewer alterations in the gut microbiota. Probiotic administration immediately after colonoscopy shows promise in reducing alterations and gastrointestinal symptoms. However, the widespread use of probiotics remains controversial due to the transient nature of both the symptoms and gut microbial alterations following a colonoscopy. Probiotics may offer greater benefits to individuals with preexisting gastrointestinal symptoms. Thus, probiotic administration may be a viable option for selected patients.
Collapse
Affiliation(s)
- Hyeong Ho Jo
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Moon Young Lee
- Digestive Disease Research Institute, Wonkwang University College of Medicine, Iksan, Korea
- Department of Physiology, Wonkwang University School of Medicine, Iksan, Korea
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Dong Han Yeom
- Department of Gastroenterology, Wonkwang University School of Medicine, Iksan, Korea
| | - Yong Sung Kim
- Digestive Disease Research Institute, Wonkwang University College of Medicine, Iksan, Korea
- Good Breath Clinic, Gunpo, Korea
| |
Collapse
|
2
|
Lan W, Yang H, Zhong Z, Luo C, Huang Q, Liu W, Yang J, Xiang H, Tang Y, Chen T. Bifidobacterium animalis subsp. lactis LPL-RH improves postoperative gastrointestinal symptoms and nutrition indexes by regulating the gut microbiota in patients with valvular heart disease: a randomized controlled trial. Food Funct 2024; 15:7605-7618. [PMID: 38938120 DOI: 10.1039/d4fo01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Gastrointestinal symptoms constitute a frequent complication in postoperative patients with valvular heart disease (VHD), impacting their postoperative recovery. Probiotics contribute to regulating human gut microbiota balance and alleviating postoperative gastrointestinal symptoms. Our objective involved assessing the potential of Bifidobacterium animalis subsp. lactis LPL-RH to alleviate postoperative gastrointestinal symptoms and expedite patient recovery. Adult patients diagnosed with VHD scheduled for valve surgery were enrolled. 110 patients were randomly divided into two groups and received LPL-RH or a placebo for 14 days. Gastrointestinal symptoms were evaluated using the Gastrointestinal Symptoms Questionnaire. An analysis of the time to recovery of bowel function and various postoperative variables was conducted in both study groups. Variations in the intestinal microbiota were detected via 16S rRNA sequencing. The study was completed by 105 participants, with 53 in the probiotic group and 52 in the placebo group. Compared to the placebo group, LPL-RH significantly reduced the total gastrointestinal symptom score after surgery (p = 0.004). Additionally, LPL-RH was found to significantly reduce abdominal pain (p = 0.001), bloating (p = 0.018), and constipation (p = 0.022) symptom scores. Furthermore, LPL-RH dramatically shortened the time to recovery of bowel function (p = 0.017). Moreover, LPL-RH administration significantly enhanced patients' postoperative nutrition indexes (red blood cell counts, hemoglobin level, p < 0.05). Microbiome analysis showed that the composition and diversity of the postoperative intestinal microbiota differed between the probiotic and placebo groups. No adverse incidents associated with probiotics were documented, emphasizing their safety. This study initially discovered that oral B. animalis subsp. lactis LPL-RH can assist in regulating intestinal microbiota balance, alleviating gastrointestinal symptoms, promoting intestinal function recovery, and enhancing nutrition indexes in patients with VHD after surgery. Regulating the intestinal microbiota may represent a potential mechanism for LPL-RH to exert clinical benefits.
Collapse
Affiliation(s)
- Wanqi Lan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Heng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiwang Zhong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Luo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qin Huang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wu Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Juesheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Haiyan Xiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Tingtao Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Persson JE, Viana P, Persson M, Relvas JH, Danielski LG. Perioperative or Postoperative Probiotics Reduce Treatment-Related Complications in Adult Colorectal Cancer Patients Undergoing Surgery: A Systematic Review and Meta-analysis. J Gastrointest Cancer 2024; 55:740-748. [PMID: 38231290 DOI: 10.1007/s12029-024-01016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE This systematic review and meta-analysis of randomized controlled trials (RCTs) aimed to assess the efficacy of perioperative or postoperative probiotics as a therapeutic approach for managing colorectal cancer treatment-related complications in patients undergoing surgery, with or without adjuvant therapy. METHODS MEDLINE, Embase, and Scopus databases were searched. RESULTS Ten RCTs with 1276 patients were included. There was a significant decrease in the incidence of diarrhea (odds ratio (OR) 0.42; 95% CI 0.31 to 0.55; p < 0.001), surgical site infection (OR 0.44; 95% CI 0.22 to 0.89; p = 0.023), urinary infection (OR 0.43; 95% CI 0.20 to 0.91; p = 0.028), pulmonary infection (OR 0.30; 95% CI 0.15 to 0.60; p < 0.001), abdominal distention (OR 0.43; 95% CI 0.25 to 0.76; p = 0.004), length of ATB therapy (mean difference (MD) - 1.66 days; 95% CI - 2.13 to - 1.19 days; p < 0.001), and duration of postoperative pyrexia (MD - 0.80 days; 95% CI - 1.38 to - 0.22 days; p = 0.007) in the probiotic group. Nevertheless, length of hospital stay, time to first defecation, and time to first solid diet were not different between groups. CONCLUSION Our findings suggest that perioperative or postoperative probiotics is effective for reducing treatment-related complications in patients with colorectal cancer undergoing surgery, with a lower rate of adverse events.
Collapse
Affiliation(s)
| | - Patricia Viana
- Department of Medicine, Universidade do Extremo Sul Catarinense, Criciuma, Brazil
| | - Marina Persson
- Department of Medicine, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Jessica H Relvas
- Department of Internal Medicine, Conjunto Hospitalar do Mandaqui, São Paulo, Brazil
| | - Lucineia G Danielski
- Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, Brazil.
| |
Collapse
|
4
|
Gan L, Wang Y, Huang S, Zheng L, Feng Q, Liu H, Liu P, Zhang K, Chen T, Fang N. Therapeutic Evaluation of Bifidobacterium animalis subsp. lactis MH-02 as an Adjunctive Treatment in Patients with Reflux Esophagitis: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:342. [PMID: 38337627 PMCID: PMC10856834 DOI: 10.3390/nu16030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Proton pump inhibitors (PPIs) are currently routinely used for the treatment of reflux esophagitis (RE); however, with frequent symptom recurrence after discontinuation and limited clinical improvement in accompanying gastrointestinal symptoms. This study aims to explore the adjuvant therapeutic effect of Bifidobacterium supplement for RE patients. A total of 110 eligible RE patients were recruited and randomly assigned to the placebo and probiotic groups. All patients were treated with rabeprazole tablets and simultaneously received either Bifidobacterium animalis subsp. lactis MH-02 or placebo for 8 weeks. Patients who achieved clinical remission then entered the next 12 weeks of follow-up. RDQ, GSRS scores, and endoscopy were performed to assess clinical improvement, and changes in intestinal microbiota were analyzed with high-throughput sequencing. Our results revealed that MH-02 combined therapy demonstrated an earlier time to symptom resolution (50.98% vs. 30.61%, p = 0.044), a significant reduction in the GSRS score (p = 0.0007), and a longer mean time to relapse (p = 0.0013). In addition, high-throughput analyses showed that MH-02 combined therapy increased the α (p = 0.001) diversity of gut microbiota and altered microbial composition by beta diversity analysis, accompanied with significantly altered gut microbiota taxa at the genus level, where the abundance of some microbial genera including Bifidobacterium, Clostridium, and Blautia were increased, while the relative abundance of Streptococcus and Rothia were decreased (p < 0.05). Collectively, these results support the beneficial effects of MH-02 as a novel complementary strategy in RE routine treatment.
Collapse
Affiliation(s)
- Lihong Gan
- Third Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330006, China
| | - Yufan Wang
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Shenan Huang
- Department of Gastrointestinal, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Li Zheng
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330006, China
| | - Qi Feng
- Third Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hui Liu
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330006, China
| | - Peng Liu
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330006, China
| | - Kaige Zhang
- Third Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330036, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Nian Fang
- Third Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330006, China
| |
Collapse
|
5
|
Zhu J, Liu W, Bian Z, Ma Y, Kang Z, Jin J, Li X, Ge S, Hao Y, Zhang H, Xie Y. Lactobacillus plantarum Zhang-LL Inhibits Colitis-Related Tumorigenesis by Regulating Arachidonic Acid Metabolism and CD22-Mediated B-Cell Receptor Regulation. Nutrients 2023; 15:4512. [PMID: 37960165 PMCID: PMC10648432 DOI: 10.3390/nu15214512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of CRC remains unclear, and its causes are complex and variable. Numerous in vitro, animal, and clinical trials have demonstrated the efficacy of probiotics such as Lactobacillus plantarum in reversing the adverse outcomes of CRC. These findings suggest that probiotics play vital roles in the prevention, adjuvant treatment, and prognosis of CRC. In this study, we constructed a mouse model of CRC using an intraperitoneal injection of azomethane combined with dextran sodium sulfate, while administering 5-fluorouracil as well as high- and low-doses of L. plantarum Zhang-LL live or heat-killed strains. Weight changes and disease activity indices were recorded during feeding, and the number of polyps and colon length were measured after euthanasia. HE staining was used to observe the histopathological changes in the colons of mice, and ELISA was used to detect the expression levels of IL-1β, TNF-α, and IFN-γ in serum. To investigate the specific mechanisms involved in alleviating CRC progression, gut microbial alterations were investigated using 16S rRNA amplicon sequencing and non-targeted metabolomics, and changes in genes related to CRC were assessed using eukaryotic transcriptomics. The results showed that both viable and heat-killed strains of L. plantarum Zhang-LL in high doses significantly inhibited tumorigenesis, colon shortening, adverse inflammatory reactions, intestinal tissue damage, and pro-inflammatory factor expression upregulation. Specifically, in the gut microbiota, the abundance of the dominant flora Acutalibacter muris and Lactobacillus johnsonii was regulated, PGE2 expression was significantly reduced, the arachidonic acid metabolism pathway was inhibited, and CD22-mediated B-cell receptor regulation-related gene expression was upregulated. This study showed that L. plantarum Zhang-LL live or heat-inactivated strains alleviated CRC progression by reducing the abundance of potentially pathogenic bacteria, increasing the abundance of beneficial commensal bacteria, mediating the arachidonic acid metabolism pathway, and improving host immunogenicity.
Collapse
Affiliation(s)
- Jingxin Zhu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Wenbo Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Zheng Bian
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Yumeng Ma
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Zixin Kang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Junhua Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Xiangyang Li
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Shaoyang Ge
- Beijing HEYIYUAN BIOTECHNOLOGY Co., Ltd., Beijing 100088, China;
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China;
| | - Hongxing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Yuanhong Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| |
Collapse
|
6
|
Zhang K, Liu H, Liu P, Feng Q, Gan L, Yao L, Huang G, Fang Z, Chen T, Fang N. Positive efficacy of Lactiplantibacillus plantarum MH-301 as a postoperative adjunct to endoscopic sclerotherapy for internal hemorrhoids: a randomized, double-blind, placebo-controlled trial. Food Funct 2023; 14:8521-8532. [PMID: 37655699 DOI: 10.1039/d3fo02936k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Background: Endoscopic sclerotherapy is a widely used minimally invasive procedure for internal hemorrhoids, yet postoperative symptoms remain a concern. The purpose of this study is to investigate the postoperative adjuvant efficacy of Lactiplantibacillus plantarum. Method: In this study, patients (≥18 years) with internal hemorrhoids that conformed to Goligher's classification of grade I-III received administration of L. plantarum MH-301 for 4 weeks following endoscopic sclerotherapy. The primary clinical endpoint in this study was the improvement rate, which was defined as the percentage of patients whose n-HDSS score decreased to 0 following the procedure. Stools were collected for high-throughput sequencing analysis post operation. Result: A total of 103 participants (51 in the LP group and 52 in the C group) were recruited, with 96 completing the entire trial (49 in the LP group and 47 in the C group). The primary clinical endpoint showed a higher improvement rate in the LP group (87.8% vs. 70.2%, P = 0.045). High-throughput sequencing analysis demonstrated that the LP group had a greater diversity of intestinal microbiota and a higher relative abundance of beneficial bacteria such as Bifidobacterium, Megamonas, and Lactobacillus. No significant difference in postoperative complications and adverse events was found. Conclusion: This paper concludes that the administration of L. plantarum MH-301 after endoscopic sclerotherapy can further increase the efficacy of the procedure and improve bowel movements. Regulation of intestinal microbiota may be the potential mechanism for the efficacy of L. plantarum MH-301.
Collapse
Affiliation(s)
- Kaige Zhang
- Third Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, Jiangxi 330006, China
| | - Hui Liu
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, Jiangxi 330006, China
| | - Peng Liu
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, Jiangxi 330006, China
| | - Qi Feng
- Third Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, Jiangxi 330006, China
| | - Lihong Gan
- Third Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, Jiangxi 330006, China
| | - Ling Yao
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, Jiangxi 330006, China
| | - Gen Huang
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, Jiangxi 330006, China
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330036, China.
| | - Nian Fang
- Third Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, Jiangxi 330006, China
| |
Collapse
|
7
|
Huang F, Li S, Chen W, Han Y, Yao Y, Yang L, Li Q, Xiao Q, Wei J, Liu Z, Chen T, Deng X. Postoperative Probiotics Administration Attenuates Gastrointestinal Complications and Gut Microbiota Dysbiosis Caused by Chemotherapy in Colorectal Cancer Patients. Nutrients 2023; 15:nu15020356. [PMID: 36678227 PMCID: PMC9861237 DOI: 10.3390/nu15020356] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The current study aims to evaluate the potential roles of taking probiotics postoperatively in attenuating the gastrointestinal complications and disturbed gut microbiota in colorectal cancer (CRC) patients undergoing chemotherapy. One hundred eligible CRC patients who were treated with radical surgery and needed to receive chemotherapy were recruited. Half of them were randomly assigned to the Probio group to take a probiotic combination from post-operation to the end of the first chemotherapeutic course. The other half of patients taking placebo instead were classified as the Placebo group. Gastrointestinal complications such as nausea, acid reflux, abdominal pain, abdominal distention, constipation, and diarrhea were recorded during chemotherapy. Fecal samples were collected preoperatively and after the first cycle of postoperative chemotherapy for 16S rRNA high-throughput sequencing and short-chain fatty acids (SCFAs) analysis. Results showed that probiotics administration could effectively reduce chemotherapy-induced gastrointestinal complications, particularly in diarrhea (p < 0.01). Additionally, chemotherapy also reduced the bacterial diversity indexes of the gut microbiota in CRC patients, which could be significantly increased by taking probiotics. Moreover, this chemotherapy caused significant changes in the composition of the gut microbiota, as indicated by decreased phylum levels of Firmicutes and increased Bacteroidetes, Proteobacteria, and Verrucomicrobia. In particular, several bacterial genera such as Akkermansia and Clostridium were significantly increased, while Prevotella, Lactobacillus, and Roseburia were decreased (p < 0.05). However, probiotic administration could effectively restore these taxa changes both at the phylum and genus levels, and mildly increase the genus levels of Bifidobacterium, Streptococcus, and Blautia. Furthermore, probiotics could also promote the production of SCFAs, particularly increasing acetate, butyrate, and propionate (p < 0.0001). These results support the beneficial effects of the probiotic interventions as novel alternative or complementary strategies in chemoprevention.
Collapse
Affiliation(s)
- Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shengjie Li
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Wenjie Chen
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yiyang Han
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yue Yao
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Liang Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Li
- Department of Vascular Surgery, Tengzhou Central People’s Hospital, Zaozhuang 277599, China
| | - Qun Xiao
- Department of Hepatobiliary Pancreatic Splenic Surgery, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou 410208, China
| | - Jing Wei
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Correspondence: (T.C.); (X.D.); Tel.: +86-791-8382-7165 (T.C.)
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (T.C.); (X.D.); Tel.: +86-791-8382-7165 (T.C.)
| |
Collapse
|