1
|
Barbero-Úriz Ó, Valenti M, Molina M, Fernández-Acero T, Cid VJ. Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae. Biomolecules 2025; 15:530. [PMID: 40305268 PMCID: PMC12025182 DOI: 10.3390/biom15040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The yeast Saccharomyces cerevisiae is the paradigm of a eukaryotic model organism. In virtue of a substantial degree of functional conservation, it has been extensively exploited to understand multiple aspects of the genetic, molecular, and cellular biology of human disease. Many aspects of cell signaling in cancer, aging, or metabolic diseases have been tackled in yeast. Here, we review the strategies undertaken throughout the years for the development of humanized yeast models to study regulated cell death (RCD) pathways in general, and specifically, those related to innate immunity and inflammation, with an emphasis on pyroptosis and necroptosis. Such pathways involve the assembly of distinct modular signaling complexes such as the inflammasome and the necrosome. Like other supramolecular organizing centers (SMOCs), such intricate molecular arrangements trigger the activity of enzymes, like caspases or protein kinases, culminating in the activation of lytic pore-forming final effectors, respectively, Gasdermin D (GSDMD) in pyroptosis and MLKL in necroptosis. Even though pathways related to those governing innate immunity and inflammation in mammals are missing in fungi, the heterologous expression of their components in the S. cerevisiae model provides a "cellular test tube" to readily study their properties and interactions, thus constituting a valuable tool for finding novel therapies.
Collapse
Affiliation(s)
| | | | | | | | - Víctor J. Cid
- Department of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Pza. de Ramón y Cajal s/n, 28040 Madrid, Spain; (Ó.B.-Ú.); (M.V.); (M.M.); (T.F.-A.)
| |
Collapse
|
2
|
Masarapu Y, Cekanaviciute E, Andrusivova Z, Westholm JO, Björklund Å, Fallegger R, Badia-I-Mompel P, Boyko V, Vasisht S, Saravia-Butler A, Gebre S, Lázár E, Graziano M, Frapard S, Hinshaw RG, Bergmann O, Taylor DM, Wallace DC, Sylvén C, Meletis K, Saez-Rodriguez J, Galazka JM, Costes SV, Giacomello S. Spatially resolved multiomics on the neuronal effects induced by spaceflight in mice. Nat Commun 2024; 15:4778. [PMID: 38862479 PMCID: PMC11166911 DOI: 10.1038/s41467-024-48916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR).
Collapse
Affiliation(s)
- Yuvarani Masarapu
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Zaneta Andrusivova
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jakub O Westholm
- National Bioinformatics Infrastructure Sweden, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Pau Badia-I-Mompel
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
| | - Valery Boyko
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
- Bionetics, Yorktown, VA, USA
| | - Shubha Vasisht
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Amanda Saravia-Butler
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Samrawit Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Enikő Lázár
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Marta Graziano
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Robert G Hinshaw
- NASA Postdoctoral Program - Oak Ridge Associated Universities, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Pharmacology and Toxicology, Department of Pharmacology and Toxicology University Medical Center Goettingen, Goettingen, Germany
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pediatrics, Division of Human Genetics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christer Sylvén
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA.
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
3
|
Liu Y, Yuan J, Zhang Y, Qin F, Bai X, Sun W, Chen T, Liu F, Zheng Y, Qi X, Zhao W, Liu B, Gao C. OTUD5 promotes the inflammatory immune response by enhancing MyD88 oligomerization and Myddosome formation. Cell Death Differ 2024; 31:753-767. [PMID: 38605168 PMCID: PMC11164869 DOI: 10.1038/s41418-024-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Myddosome is an oligomeric complex required for the transmission of inflammatory signals from TLR/IL1Rs and consists of MyD88 and IRAK family kinases. However, the molecular basis for the self-assemble of Myddosome proteins and regulation of intracellular signaling remains poorly understood. Here, we identify OTUD5 acts as an essential regulator for MyD88 oligomerization and Myddosome formation. OTUD5 directly interacts with MyD88 and cleaves its K11-linked polyubiquitin chains at Lys95, Lys231 and Lys250. This polyubiquitin cleavage enhances MyD88 oligomerization after LPS stimulation, which subsequently promotes the recruitment of downstream IRAK4 and IRAK2 to form Myddosome and the activation of NF-κB and MAPK signaling and production of inflammatory cytokines. Consistently, Otud5-deficient mice are less susceptible to LPS- and CLP-induced sepsis. Taken together, our findings reveal a positive regulatory role of OTUD5 in MyD88 oligomerization and Myddosome formation, which provides new sights into the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yaxing Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Jiahua Yuan
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yuling Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Fei Qin
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Xuemei Bai
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Wanwei Sun
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Xiaopeng Qi
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
4
|
Sha X, Ye H, Wang X, Xu Z, Sun A, Xiao W, Zhang T, Yang S, Yang H. GSDMD mediated pyroptosis induced inflammation of Graves' orbitopathy via the NF-κB/ AIM2/ Caspase-1 pathway. Exp Eye Res 2024; 240:109812. [PMID: 38342335 DOI: 10.1016/j.exer.2024.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/28/2023] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Gasdermin D (GSDMD) is a key executor which triggers pyroptosis as well as an attractive checkpoint in various inflammatory and autoimmune diseases but it has yet to prove its function in Graves'orbitopathy (GO). Our aim was to investigate GSDMD levels in orbital connective tissue and serum of GO patients and then assess the association between serum levels and patients' clinical activity score (CAS). Further, GSDMD-mediated pyroptosis and the underlying mechanism in inflammatory pathogenesis in the cultured orbital fibroblasts (OFs) of GO patients were examined. OFs were collected after tumor necrosis factor (TNF)-α or interferon (IFN)-γ treatment or combination treatment at different times, and the expression of GSDMD and related molecular mechanisms were analyzed. Then, we constructed the GSDMD knockout system with siRNA and the system was further exposed to the medium with or without IFN-γ and TNF-α for a specified time. Finally, we evaluated the production of interleukin (IL)-1β and IL-18. We found that serum GSDMD levels were elevated and positively correlated with the CAS in GO patients. Meanwhile, the expression of GSDMD and N-terminal domain (NT-GSDMD) in orbital connective tissue of GO patients was augmented. Also, increased expression of GSDMD and related pyroptosis factors was observed in vitro model of GO. We further demonstrated that GSDMD-mediated pyroptosis induced inflammation via the nuclear factor kB (NF-κB)/absent in melanoma-2 (AIM-2)/caspase-1 pathway. In addition, blocking GSDMD suppressed proinflammatory cytokine production in GO. We concluded that GSDMD may be a biomarker as well as a potential target for the evaluation and treatment of inflammation related with GO.
Collapse
Affiliation(s)
- Xiaotong Sha
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Xing Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhihui Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Anqi Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Te Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shenglan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
5
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
6
|
Puleo MG, Miceli S, Di Chiara T, Pizzo GM, Della Corte V, Simonetta I, Pinto A, Tuttolomondo A. Molecular Mechanisms of Inflammasome in Ischemic Stroke Pathogenesis. Pharmaceuticals (Basel) 2022; 15:1168. [PMID: 36297283 PMCID: PMC9612213 DOI: 10.3390/ph15101168] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (also called cerebral ischemia) is one of the leading causes of death and severe disability worldwide. NLR inflammasomes play a crucial role in sensing cell damage in response to a harmful stimuli and modulating the inflammatory response, promoting the release of pro-inflammatory cytokines such as IL-18 and IL-1β following ischemic injury. Therefore, a neuroprotective effect is achieved by inhibiting the expression, assembly, and secretion of inflammasomes, thus limiting the extent of brain detriment and neurological sequelae. This review aims to illustrate the molecular characteristics, expression levels, and assembly of NLRP3 (nucleotide-binding oligomerization domain-like receptor [NLR] family pyrin-domain-containing 3) inflammasome, the most studied in the literature, in order to discover promising therapeutic implications. In addition, we provide some information regarding the contribution of NLRP1, NLRP2, and NLRC4 inflammasomes to ischemic stroke pathogenesis, highlighting potential therapeutic strategies that require further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|