1
|
Božič A, Podgornik R. Increased preference for lysine over arginine in spike proteins of SARS-CoV-2 BA.2.86 variant and its daughter lineages. PLoS One 2025; 20:e0320891. [PMID: 40193474 PMCID: PMC11975073 DOI: 10.1371/journal.pone.0320891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic offered an unprecedented glimpse into the evolution of its causative virus, SARS-CoV-2. It has been estimated that since its outbreak in late 2019, the virus has explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain. Spike protein of the virus exhibits the largest sequence variation in particular, with many individual mutations impacting target recognition, cellular entry, and endosomal escape of the virus. Moreover, recent studies unveiled a significant increase in the total charge on the spike protein during the evolution of the virus in the initial period of the pandemic. While this trend has recently come to a halt, we perform a sequence-based analysis of the spike protein of 2665 SARS-CoV-2 variants which shows that mutations in ionizable amino acids continue to occur with the newly emerging variants, with notable differences between lineages from different clades. What is more, we show that within mutations of amino acids which can acquire positive charge, the spike protein of SARS-CoV-2 exhibits a prominent preference for lysine residues over arginine residues. This lysine-to-arginine ratio increased at several points during spike protein evolution, most recently with BA.2.86 and its sublineages, including the recently dominant JN.1, KP.3, and XEC variants. The increased ratio is a consequence of mutations in different structural regions of the spike protein and is now among the highest among viral species in the Coronaviridae family. The impact of high lysine-to-arginine ratio in the spike proteins of BA.2.86 and its daughter lineages on viral fitness remains unclear; we discuss several potential mechanisms that could play a role and that can serve as a starting point for further studies.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
2
|
Yu R, Zhang L, Wang D, Yang J, Zhou P, Wen Y, Li M, Bai Y, Zhang Z, Peng Y, Lu Y, Li D, He J, Wang Y, Guo H, Pan L, Liu X. Characterization of a cell-adapted completely attenuated genotype GIIa porcine epidemic diarrhea virus strain. Virology 2025; 604:110407. [PMID: 39862751 DOI: 10.1016/j.virol.2025.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused significant harm to the global pig industry since its discovery. In this study, a highly pathogenic strain of GIIa PEDV CH/HBXT/2018, isolated previously, was continuously passaged in Vero cells up to passage (P)240, resulting in a completely attenuated virus. The proliferation characteristics of different passages of the strain in Vero cells, pathogenicity in newborn piglets, and mutations in S gene sequence indicated that as the passage number increased, the replication efficiency of PEDV in Vero cells gradually improved, with a more pronounced cytopathic effect. However, its pathogenicity in piglets decreased progressively, evident as reduced viral loads in the feces and intestinal tissues, less-severe clinical symptoms, less-severe histopathological damage, and lower antigen expression in intestinal tissues. At P240, the strain was completely attenuated. A sequence analysis revealed 17 amino acid mutations in the structural spike protein, which may have contributed to the biological changes observed at P240. Furthermore, compared with P10, the strain's dependence on trypsin had decreased significantly at P200. A differential transcriptomic analysis revealed 1712 differentially expressed genes (DEGs) between the P10 and P200 infection groups, of which 458 were upregulated and 1254 downregulated. These DEGs were primarily involved in signaling pathways such as cytokine-cytokine receptor interaction, inflammatory response, and MHC protein complex. Our findings provide valuable insights into the mechanisms of PEDV attenuation and should facilitate the development of live vaccines.
Collapse
Affiliation(s)
- Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Dongsheng Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Jun Yang
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China.
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yuhan Wen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Mingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yingjie Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yousheng Peng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yanzhen Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Jian He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
3
|
Zhang L, Yu R, Wang L, Zhang Z, Lu Y, Zhou P, Wang Y, Guo H, Pan L, Liu X. Serial cell culture passaging in vitro led to complete attenuation and changes in the characteristic features of a virulent porcine deltacoronavirus strain. J Virol 2024; 98:e0064524. [PMID: 39012141 PMCID: PMC11334472 DOI: 10.1128/jvi.00645-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused enormous economic losses in the pig industry worldwide. However, no commercial vaccine is currently available. Therefore, developing a safe and efficacious live-attenuated vaccine candidate is urgently needed. In this study, the PDCoV strain CH/XJYN/2016 was continuously passaged in LLC-PK cells until passage 240, and the virus growth kinetics in cell culture, pathogenicity in neonatal piglets, transcriptome differences after LLC-PK infection, changes in the functional characteristics of the spike (S) protein in the high- and low-passage strains, genetic variation of the virus genome, resistance to pepsin and acid, and protective effects of this strain when used as a live-attenuated vaccine were examined. The results of animal experiments demonstrated that the virulent PDCoV strain CH/XJYN/2016 was completely attenuated and not pathogenic in piglets following serial cell passage. Genome sequence analysis showed that amino acid mutations in nonstructural proteins were mainly concentrated in Nsp3, structural protein mutations were mainly concentrated in the S protein, and the N, M, and E genes were conserved. Transcriptome comparison revealed that compared with negative control cells, P10-infected LLC-PK cells had the most differentially expressed genes (DEGs), while P0 and P240 had the least number of DEGs. Analysis of trypsin dependence and related structural differences revealed that the P10 S protein interacted more strongly with trypsin and that the P120 S protein interacted more strongly with the APN receptor. Moreover, the infectivity of P240 was not affected by pepsin but was significantly decreased after exposure to low pH. Furthermore, the P240-based live-attenuated vaccine provided complete protection to piglets against the challenge of virulent PDCoV. In conclusion, we showed that a PDCoV strain was completely attenuated through serial passaging in vitro. These results provide insights into the potential molecular mechanisms of PDCoV attenuation and the development of a promising live-attenuated PDCoV vaccine.IMPORTANCEPorcine deltacoronavirus (PDCoV) is one of the most important enteropathogenic pathogens that cause diarrhea in pigs of various ages, especially in suckling piglets, and causes enormous economic losses in the global commercial pork industry. There are currently no effective measures to prevent and control PDCoV. As reported in previous porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus studies, inactivated vaccines usually elicit less robust protective immune responses than live-attenuated vaccines in native sows. Therefore, identifying potential attenuation mechanisms, gene evolution, pathogenicity differences during PDCoV passaging, and immunogenicity as live-attenuated vaccines is important for elucidating the mechanism of attenuation and developing safe and effective vaccines for virulent PDCoV strains. In this study, we demonstrated that the virulence of the PDCoV strain CH/XJYN/2016 was completely attenuated following serial cell passaging in vitro, and changes in the biological characteristics and protection efficacy of the strain were evaluated. Our results help elucidate the mechanism of PDCoV attenuation and support the development of appropriate designs for the study of live PDCoV vaccines.
Collapse
Affiliation(s)
- Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Lianshun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Yanzhen Lu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| |
Collapse
|
4
|
Božič A, Podgornik R. Changes in total charge on spike protein of SARS-CoV-2 in emerging lineages. BIOINFORMATICS ADVANCES 2024; 4:vbae053. [PMID: 38645718 PMCID: PMC11031363 DOI: 10.1093/bioadv/vbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Motivation Charged amino acid residues on the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been shown to influence its binding to different cell surface receptors, its non-specific electrostatic interactions with the environment, and its structural stability and conformation. It is therefore important to obtain a good understanding of amino acid mutations that affect the total charge on the spike protein which have arisen across different SARS-CoV-2 lineages during the course of the virus' evolution. Results We analyse the change in the number of ionizable amino acids and the corresponding total charge on the spike proteins of almost 2200 SARS-CoV-2 lineages that have emerged over the span of the pandemic. Our results show that the previously observed trend toward an increase in the positive charge on the spike protein of SARS-CoV-2 variants of concern has essentially stopped with the emergence of the early omicron variants. Furthermore, recently emerged lineages show a greater diversity in terms of their composition of ionizable amino acids. We also demonstrate that the patterns of change in the number of ionizable amino acids on the spike protein are characteristic of related lineages within the broader clade division of the SARS-CoV-2 phylogenetic tree. Due to the ubiquity of electrostatic interactions in the biological environment, our findings are relevant for a broad range of studies dealing with the structural stability of SARS-CoV-2 and its interactions with the environment. Availability and implementation The data underlying the article are available in the Supplementary material.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
5
|
Abstract
The greatest challenge in drug discovery remains the high rate of attrition across the different phases of the process, which cost the industry billions of dollars every year. While all phases remain crucial to ensure pharmaceutical-level safety, quality, and efficacy of the end product, streamlining these efforts toward compounds with success potential is pivotal for a more efficient and cost-effective process. The use of artificial intelligence (AI) within the pharmaceutical industry aims at just this, and has applications in preclinical screening for biological activity, optimization of pharmacokinetic properties for improved drug formulation, early toxicity prediction which reduces attrition, and pre-emptively screening for genetic changes in the biological target to improve therapeutic longevity. Here, we present a series of in silico tools that address these applications in small molecule development and describe how they can be embedded within the current pharmaceutical development pipeline.
Collapse
Affiliation(s)
- Adam Serghini
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Stephanie Portelli
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia.
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia.
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Portelli S, Heaton R, Ascher DB. Identifying Innate Resistance Hotspots for SARS-CoV-2 Antivirals Using In Silico Protein Techniques. Genes (Basel) 2023; 14:1699. [PMID: 37761839 PMCID: PMC10531314 DOI: 10.3390/genes14091699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The development and approval of antivirals against SARS-CoV-2 has further equipped clinicians with treatment strategies against the COVID-19 pandemic, reducing deaths post-infection. Extensive clinical use of antivirals, however, can impart additional selective pressure, leading to the emergence of antiviral resistance. While we have previously characterized possible effects of circulating SARS-CoV-2 missense mutations on proteome function and stability, their direct effects on the novel antivirals remains unexplored. To address this, we have computationally calculated the consequences of mutations in the antiviral targets: RNA-dependent RNA polymerase and main protease, on target stability and interactions with their antiviral, nucleic acids, and other proteins. By analyzing circulating variants prior to antiviral approval, this work highlighted the inherent resistance potential of different genome regions. Namely, within the main protease binding site, missense mutations imparted a lower fitness cost, while the opposite was noted for the RNA-dependent RNA polymerase binding site. This suggests that resistance to nirmatrelvir/ritonavir combination treatment is more likely to occur and proliferate than that to molnupiravir. These insights are crucial both clinically in drug stewardship, and preclinically in the identification of less mutable targets for novel therapeutic design.
Collapse
Affiliation(s)
- Stephanie Portelli
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Ruby Heaton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
7
|
Ao D, He X, Hong W, Wei X. The rapid rise of SARS-CoV-2 Omicron subvariants with immune evasion properties: XBB.1.5 and BQ.1.1 subvariants. MedComm (Beijing) 2023; 4:e239. [PMID: 36938325 PMCID: PMC10015854 DOI: 10.1002/mco2.239] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
As the fifth variant of concern of the SARS-CoV-2 virus, the Omicron variant (B.1.1.529) has quickly become the dominant type among the previous circulating variants worldwide. During the Omicron wave, several subvariants have emerged, with some exhibiting greater infectivity and immune evasion, accounting for their fast spread across many countries. Recently, two Omicron subvariants, BQ.1 and XBB lineages, including BQ.1.1, XBB.1, and XBB.1.5, have become a global public health issue given their ability to escape from therapeutic monoclonal antibodies and herd immunity induced by prior coronavirus disease 2019 (COVID-19) vaccines, boosters, and infection. In this respect, XBB.1.5, which has been established to harbor a rare mutation F486P, demonstrates superior transmissibility and immune escape ability compared to other subvariants and has emerged as the dominant strain in several countries. This review provides a comprehensive overview of the epidemiological features, spike mutations, and immune evasion of BQ.1 and XBB lineages. We expounded on the mechanisms underlying mutations and immune escape from neutralizing antibodies from vaccinated or convalescent COVID-19 individuals and therapeutic monoclonal antibodies (mAbs) and proposed strategies for prevention against BQ.1 and XBB sublineages.
Collapse
Affiliation(s)
- Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|