1
|
Bibi A, Yu Z, Cui L, Yang G. Harnessing monocyte dynamics for treatment of multiple sclerosis; insights from experimental model studies. IMMUNOTHERAPY ADVANCES 2025; 5:ltaf003. [PMID: 40342728 PMCID: PMC12059560 DOI: 10.1093/immadv/ltaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/27/2025] [Indexed: 05/11/2025] Open
Abstract
Monocytes are central to the innate immune system's response to infection or injury. In murine, these cells are classified into distinct subsets: classical monocytes, defined by elevated Ly6C expression (Ly6Chi), intermediate monocytes (Ly6Cint), and non-classical inflammatory monocytes, characterized by low Ly6C expression (Ly6Clow). Monocytes recruited to tissues differentiate into macrophages, which can be pro-inflammatory or anti-inflammatory, thereby influencing disease processes and outcomes. The principal function of classical monocytes is the mediation of pro-inflammatory reactions, whereas non-classical monocytes are associated with repair and anti-inflammatory processes, patrolling the lumen of the vessels. Growing evidence highlights the importance of monocytes in multiple sclerosis (MS), an autoimmune and neurodegenerative disease of the central nervous system (CNS). Recent studies indicate that modulation of the innate immune system, focusing specifically on the shift from Ly6Chi to Ly6Clow monocytes, is an effective therapeutic strategy for neurodegenerative diseases, such as Alzheimer's and MS. This transition is crucial for switching the immune response from inflammation to tissue repair and inflammation resolution, emphasizing the plasticity of monocytes and their potential as targets in MS. This review differs from prior studies in that it focuses solely on animal models of MS, which either directly perturb or study monocytes, or where therapeutic approaches mediate their protective effects through monocytes. Such details permit a subtle comprehension of monocyte dynamics in the context of MS.
Collapse
Affiliation(s)
- Aqsa Bibi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250061, China
| | - Zhenjiang Yu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250061, China
| | - Lv Cui
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250061, China
| |
Collapse
|
2
|
Boutou A, Roufagalas I, Politopoulou K, Tastsoglou S, Abouzeid M, Skoufos G, Verdu de Juan L, Ko JH, Kyrargyri V, Hatzigeorgiou AG, Barnum CJ, Tesi RJ, Bauer J, Lassmann H, Johnson MR, Probert L. Microglia regulate cortical remyelination via TNFR1-dependent phenotypic polarization. Cell Rep 2024; 43:114894. [PMID: 39446583 DOI: 10.1016/j.celrep.2024.114894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Microglia are strongly implicated in demyelinating neurodegenerative diseases with increasing evidence for roles in protection and healing, but the mechanisms that control CNS remyelination are poorly understood. Here, we show that microglia-specific deletion of tumor necrosis factor receptor 1 (TNFR1) and pharmacological inhibition of soluble TNF (solTNF) or downstream interleukin-1 receptor (IL-1R) allow maturation of highly activated disease-associated microglia with increased size and myelin phagocytosis capacity that accelerate cortical remyelination and motor recovery. Single-cell transcriptomic analysis of cortex at disease onset reveals that solTNF inhibition enhances reparative IL-10-responsive while preventing damaging IL-1-related signatures of disease-associated microglia. Longitudinal brain transcriptome analysis through disease reveals earlier recovery upon therapeutic loss of microglia TNFR1. The functional relevance of microglia inflammatory polarization pathways for disease is validated in vivo. Furthermore, disease-state microglia producing downstream IL-1/IL-18/caspase-11 targets are identified in human demyelinating lesions. Overall, redirecting disease microglia polarization by targeting cytokines is a potential approach for improving CNS repair in demyelinating disorders.
Collapse
Affiliation(s)
- Athena Boutou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Ilias Roufagalas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Katerina Politopoulou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Maya Abouzeid
- Department of Brain Sciences, Imperial College Faculty of Medicine, London W120NN, UK
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Laia Verdu de Juan
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Jeong Hun Ko
- Department of Brain Sciences, Imperial College Faculty of Medicine, London W120NN, UK
| | - Vasiliki Kyrargyri
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Michael R Johnson
- Department of Brain Sciences, Imperial College Faculty of Medicine, London W120NN, UK
| | - Lesley Probert
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece.
| |
Collapse
|
3
|
Papazian I, Kourouvani M, Dagkonaki A, Gouzouasis V, Dimitrakopoulou L, Markoglou N, Badounas F, Tselios T, Anagnostouli M, Probert L. Spontaneous human CD8 T cell and autoimmune encephalomyelitis-induced CD4/CD8 T cell lesions in the brain and spinal cord of HLA-DRB1*15-positive multiple sclerosis humanized immune system mice. eLife 2024; 12:RP88826. [PMID: 38900149 PMCID: PMC11189630 DOI: 10.7554/elife.88826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Autoimmune diseases of the central nervous system (CNS) such as multiple sclerosis (MS) are only partially represented in current experimental models and the development of humanized immune mice is crucial for better understanding of immunopathogenesis and testing of therapeutics. We describe a humanized mouse model with several key features of MS. Severely immunodeficient B2m-NOG mice were transplanted with peripheral blood mononuclear cells (PBMCs) from HLA-DRB1-typed MS and healthy (HI) donors and showed rapid engraftment by human T and B lymphocytes. Mice receiving cells from MS patients with recent/ongoing Epstein-Barr virus reactivation showed high B cell engraftment capacity. Both HLA-DRB1*15 (DR15) MS and DR15 HI mice, not HLA-DRB1*13 MS mice, developed human T cell infiltration of CNS borders and parenchyma. DR15 MS mice uniquely developed inflammatory lesions in brain and spinal cord gray matter, with spontaneous, hCD8 T cell lesions, and mixed hCD8/hCD4 T cell lesions in EAE immunized mice, with variation in localization and severity between different patient donors. Main limitations of this model for further development are poor monocyte engraftment and lack of demyelination, lymph node organization, and IgG responses. These results show that PBMC humanized mice represent promising research tools for investigating MS immunopathology in a patient-specific approach.
Collapse
Affiliation(s)
- Irini Papazian
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
| | - Maria Kourouvani
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
- Athens International Master’s Programme in Neurosciences, Department of Biology, National and Kapodistrian University of AthensAthensGreece
| | | | - Vasileios Gouzouasis
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
- Department of Molecular Biology and Genetics, Democritus University of ThraceAlexandroupolisGreece
| | - Lila Dimitrakopoulou
- Department of Hematology, Laiko General Hospital, National and Kapodistrian University of AthensAthensGreece
| | - Nikolaos Markoglou
- Research Immunogenetics Laboratory, Multiple Sclerosis and Demyelinating Diseases Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aeginition University HospitalAthensGreece
| | - Fotis Badounas
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
- Transgenic Technology Unit, Hellenic Pasteur InstituteAthensGreece
| | | | - Maria Anagnostouli
- Research Immunogenetics Laboratory, Multiple Sclerosis and Demyelinating Diseases Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aeginition University HospitalAthensGreece
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
| |
Collapse
|
4
|
Sommer K, Garibagaoglu H, Paap EM, Wiendl M, Müller TM, Atreya I, Krönke G, Neurath MF, Zundler S. Discrepant Phenotyping of Monocytes Based on CX3CR1 and CCR2 Using Fluorescent Reporters and Antibodies. Cells 2024; 13:819. [PMID: 38786041 PMCID: PMC11119841 DOI: 10.3390/cells13100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice.
Collapse
Affiliation(s)
- Katrin Sommer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Hilal Garibagaoglu
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Eva-Maria Paap
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Tanja M. Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Gerhard Krönke
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Medical Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Jiang Q, Duan J, Van Kaer L, Yang G. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model. Aging Dis 2024; 15:1329-1343. [PMID: 37307825 PMCID: PMC11081146 DOI: 10.14336/ad.2023.0323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/14/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous cell population that consists of mostly immature myeloid cells, are immunoregulatory cells mainly characterized by their suppressive functions. Emerging findings have revealed the involvement of MDSCs in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). MS is an autoimmune and degenerative disease of the central nervous system characterized by demyelination, axon loss, and inflammation. Studies have reported accumulation of MDSCs in inflamed tissues and lymphoid organs of MS patients and EAE mice, and these cells display dual functions in EAE. However, the contribution of MDSCs to MS/EAE pathogenesis remains unclear. This review aims to summarize our current understanding of MDSC subsets and their possible roles in MS/EAE pathogenesis. We also discuss the potential utility and associated obstacles in employing MDSCs as biomarkers and cell-based therapies for MS.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Tamberi L, Belloni A, Pugnaloni A, Rippo MR, Olivieri F, Procopio AD, Bronte G. The Influence of Myeloid-Derived Suppressor Cell Expansion in Neuroinflammation and Neurodegenerative Diseases. Cells 2024; 13:643. [PMID: 38607083 PMCID: PMC11011419 DOI: 10.3390/cells13070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.
Collapse
Affiliation(s)
- Lorenza Tamberi
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| |
Collapse
|
7
|
Avloniti M, Evangelidou M, Gomini M, Loupis T, Emmanouil M, Mitropoulou A, Tselios T, Lassmann H, Gruart A, Delgado-García JM, Probert L, Kyrargyri V. IKKβ deletion from CNS macrophages increases neuronal excitability and accelerates the onset of EAE, while from peripheral macrophages reduces disease severity. J Neuroinflammation 2024; 21:34. [PMID: 38279130 PMCID: PMC10821407 DOI: 10.1186/s12974-024-03023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease characterized by motor deficits and cognitive decline. Many immune aspects of the disease are understood through studies in the experimental autoimmune encephalomyelitis (EAE) model, including the contribution of the NF-κB transcription factor to neuroinflammation. However, the cell-specific roles of NF-κB to EAE and its cognitive comorbidities still needs further investigation. We have previously shown that the myeloid cell NF-κB plays a role in the healthy brain by exerting homeostatic regulation of neuronal excitability and synaptic plasticity and here we investigated its role in EAE. METHODS We used constitutive MφIKKβΚΟ mice, in which depletion of IKKβ, the main activating kinase of NF-κB, was global to CNS and peripheral macrophages, and ΜgΙΚΚβKO mice, in which depletion was inducible and specific to CNS macrophages by 28 days after tamoxifen administration. We subjected these mice to MOG35-55 induced EAE and cuprizone-induced demyelination. We measured pathology by immunohistochemistry, investigated molecular mechanisms by RNA sequencing analysis and studied neuronal functions by in vivo electrophysiology in awake animals. RESULTS Global depletion of IKKβ from myeloid cells in MφIKKβΚΟ mice accelerated the onset and significantly supressed chronic EAE. Knocking out IKKβ only from CNS resident macrophages accelerated the onset and exacerbated chronic EAE, accompanied by earlier demyelination and immune cell infiltration but had no effect in cuprizone-induced demyelination. Peripheral T cell effector functions were not affected by myeloid cell deletion of IKKβ, but CNS resident mechanisms, such as microglial activation and neuronal hyperexcitability were altered from early in EAE. Lastly, depletion of myeloid cell IKKβ resulted in enhanced late long-term potentiation in EAE. CONCLUSIONS IKKβ-mediated activation of NF-κΒ in myeloid cells has opposing roles in EAE depending on the cell type and the disease stage. In CNS macrophages it is protective while in peripheral macrophages it is disease-promoting and acts mainly during chronic disease. Although clinically protective, CNS myeloid cell IKKβ deletion dysregulates neuronal excitability and synaptic plasticity in EAE. These effects of IKKβ on brain cognitive abilities deserve special consideration when therapeutic interventions that inhibit NF-κB are used in MS.
Collapse
Affiliation(s)
- Maria Avloniti
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Evangelidou
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Gomini
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Theodore Loupis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
- Haematology Research Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Mary Emmanouil
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | | | | | - Hans Lassmann
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | | | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Vasiliki Kyrargyri
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
8
|
Zanghì A, Di Filippo PS, Avolio C, D’Amico E. Myeloid-derived Suppressor Cells and Multiple Sclerosis. Curr Neuropharmacol 2024; 23:36-57. [PMID: 38988152 PMCID: PMC11519824 DOI: 10.2174/1570159x22999240710142942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 07/12/2024] Open
Abstract
Myeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous population of immature myeloid cells that play important roles in maintaining immune homeostasis and regulating immune responses. MDSCs can be divided into two main subsets based on their surface markers and functional properties: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Recently greatest attention has been paid to innate immunity in Multiple Sclerosis (MS), so the aim of our review is to provide an overview of the main characteristics of MDSCs in MS and its preclinical model by discussing the most recent data available. The immunosuppressive functions of MDSCs can be dysregulated in MS, leading to an exacerbation of the autoimmune response and disease progression. Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach for autoimmune diseases, but the cellular mechanisms behind successful therapy remain poorly understood. Therefore, targeting MDSCs could be a promising therapeutic approach for MS. Various strategies for modulating MDSCs have been investigated, including the use of pharmacological agents, biological agents, and adoptive transfer of exogenous MDSCs. However, it remained unclear whether MDSCs display any therapeutic potential in MS and how this therapy could modulate different aspects of the disease. Collectively, all the described studies revealed a pivotal role for MDSCs in the regulation of MS.
Collapse
Affiliation(s)
- Aurora Zanghì
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Emanuele D’Amico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
9
|
Wang C, Xian L, Zheng S, Li J, Chen X, Wang S. Cranial venous-outflow obstruction promotes neuroinflammation via ADAM17/solTNF-α/NF-κB pathway following experimental TBI. Brain Res Bull 2023; 204:110804. [PMID: 37918697 DOI: 10.1016/j.brainresbull.2023.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Traumatic brain injury (TBI) is a global public health problem. As an important cause of secondary injury, cerebrovascular reaction can cause secondary bleeding, venous sinus thrombosis, and malignant brain swelling. Recent clinical studies have confirmed that intracranial venous return disorder is closely related to the prognosis of patients, yet the specific molecular mechanism involved in this process is still unclear. This study used an acute subdural hematoma (ASDH) model with cranial venous outflow obstruction (CVO) to explore how CVO aggravates the pathological process after TBI, especially for inflammation and tissue damage. The results suggest that intracranial venous return disorder exacerbates neurological deficits and brain edema in rats with ASDH by aggravating the destruction of endothelial cell tight junctions (TJs) proteins and promoting the expression of inflammatory factors, the activation of microglia and expression of recombinant A disintegrin and metalloprotease 17 (ADAM17) as well as the secretion of solTNF-α, a soluble form of tumor necrosis factor-alpha (TNFα), which in turn increase IκB-α ((inhibitor of the transcription factor nuclear factor-κB) and NF-κB p65. Our study revealed a molecular basis of how CVO aggravates inflammation and tissue damage.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, PR China; Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, PR China
| | - Liang Xian
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, PR China
| | - Shaorui Zheng
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, PR China
| | - Jun Li
- Department of Neurosurgery, 900th Hospital, Fuzhou, PR China
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China.
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, PR China; Department of Neurosurgery, 900th Hospital, Fuzhou, PR China.
| |
Collapse
|