1
|
Wang Y, Mao S, Feng X, Qiu R, Li N, Yao L, Qin Y. Epigallocatechin gallate (EGCG) inhibits Micropterus salmoides rhabdovirus replication via suppressing viral attachment and infectivity. FISH & SHELLFISH IMMUNOLOGY 2025; 165:110467. [PMID: 40449702 DOI: 10.1016/j.fsi.2025.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/13/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Micropterus salmoides rhabdovirus (MSRV) remains an economically important pathogen in the global largemouth bass industry, effective drugs to control the virus are still lacking. Epigallocatechin gallate (EGCG), the most abundant and bioactive catechin in green tea, possesses multiple biological activities, including widespread antiviral effects. However, whether EGCG can inhibit MSRV infection remains unknown. Here, we tried to determine the role of EGCG in MSRV replication and to investigate its underlying mechanisms. Cell viability and drug treatment assays showed that EGCG significantly inhibited MSRV replication at the concentration range of 1-40 μM without obvious cytotoxicity. Pretreatment assay indicated that treating EPC cells with EGCG before MSRV infection has no significant inhibition on MSRV replication, suggesting the antiviral action of EGCG might not target to MSRV receptor and/or related proteins required for MSRV infection. Time of addition assays indicated that EGCG exerted antiviral activity in the early stage of MSRV life cycle. Further studies showed that EGCG possesses excellent inhibitory effects on the attachment step of MSRV. The virucidal assay revealed EGCG directly attenuated MSRV infectivity, which may partly account for its anti-MSRV effect. In vivo experiments showed that EGCG improved the survival rate of MSRV-challenged fish by 21 %. Altogether, EGCG exhibited a strong anti-MSRV activity and might be a promising therapeutic drug for MSRV infection.
Collapse
Affiliation(s)
- Yuhang Wang
- College of Life Science, Nanyang Normal University, Nanyang 473061, China
| | - Shuangshuang Mao
- College of Life Science, Nanyang Normal University, Nanyang 473061, China; Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang 473061, China; Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, Nanyang 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China
| | - Xiaoran Feng
- College of Life Science, Nanyang Normal University, Nanyang 473061, China
| | - Reng Qiu
- College of Life Science, Nanyang Normal University, Nanyang 473061, China; Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang 473061, China; Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, Nanyang 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China
| | - Na Li
- College of Life Science, Nanyang Normal University, Nanyang 473061, China; Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang 473061, China; Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, Nanyang 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China
| | - Lunguang Yao
- College of Life Science, Nanyang Normal University, Nanyang 473061, China; Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang 473061, China; Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, Nanyang 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China
| | - Yinghui Qin
- College of Life Science, Nanyang Normal University, Nanyang 473061, China; Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang 473061, China; Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, Nanyang 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China.
| |
Collapse
|
2
|
Chu X, Chen J, Lin L, Yao J, Huang L, Gao M, Shen J, Pan X. Temporal Dynamics of Immune Response Signalling in Largemouth Bass (Micropterus salmoides) Infected With Largemouth Bass Virus. JOURNAL OF FISH DISEASES 2025; 48:e14086. [PMID: 39905850 DOI: 10.1111/jfd.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/12/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
The largemouth bass virus (LMBV) significantly impacts Chinese largemouth bass aquaculture. The molecular mechanisms regulating LMBV virulence and the gene responses stimulated in the host during infection remain unclear. This study investigates the transcriptional dynamics and signalling pathways activated during the immune response to LMBV by analysing the transcriptome of head kidney tissues at 1, 4, 7, and 28 days post-infection (dpi) using RNA sequencing. Histopathological and viral load analyses indicated early tissue disruption, followed by extensive recovery by 28 dpi. Analysis of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA), combined with Venn analysis of samples at 1, 4, and 7 dpi, identified significant and common genes. Early infection triggered robust innate immunity through activation of the RIG-I like receptor and cGAS-STING signalling pathways, which activated type I interferons (IFNs) and interferon-stimulated genes (ISGs). Later stages indicated activation of adaptive immune responses. Validation of randomly selected genes via RT-qPCR confirmed the RNA-seq results, showing consistent expression patterns. This comprehensive study offers new insights into the sustained innate and adaptive immune responses to LMBV.
Collapse
Affiliation(s)
- Xin Chu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Jing Chen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Lingyun Lin
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiayun Yao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Lei Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Mingyue Gao
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- College of Life Sciences, Huzhou University, Huzhou, China
| | - Jinyu Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xiaoyi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|
3
|
Yu H, Nie Y, Zhang B, Xue J, Xue K, Huang X, Zhang X. Creatine supplementation in largemouth bass (Micropterus salmoides) diets: Improving intestinal health and alleviating enteritis. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110164. [PMID: 39894092 DOI: 10.1016/j.fsi.2025.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Creatine plays an important role in regulating intestinal epithelial cell energy metabolism, epithelial integrity, and intestinal barrier function. In this study, three feeds with varying creatine concentrations (0 %, 0.5 %, and 4 %, labeled CR0, CR0.5, and CR4, respectively) were formulated and administered to juvenile largemouth bass (Micropterus salmoides) for 8 weeks. Creatine-containing diets significantly improved growth performance and intestinal villus height. Microbiota analysis revealed that creatine-containing diets changed the beta diversity of gut microbes and increased the relative proportion of Cetobacterium. Enteritis was induced for 7 days using the corresponding feeds containing creatine and 2 % DSS (labeled CR0, DCR0, DCR0.5, and DCR4). Enteritis resulted in an increase in hif1α expression in the DCR0.5 and DCR4 groups and a significant increase expression of creatine transporter SLC6A8. QPCR and Western blotting of intestinal barrier-related genes (e.g., Claudin1, Claudin4, and ZO1), MUC2 immunohistochemistry, and PAS mucus staining were used to show intestinal barrier status, these results suggest that dietary creatine attenuates the extent of intestinal barrier damage. After TUNEL and KI67 immunofluorescence analyses of the intestine and detection of the expression of relevant genes at the protein and transcript levels, the results showed that dietary addition of creatine significantly alleviated intestinal apoptosis and cellular inflammatory responses due to DSS-induced enteritis. These findings indicate long-term dietary supplementation with creatine modulated the microbial composition of the intestinal lumen of juvenile largemouth bass, promoted intestinal health, and improved anti-inflammatory properties following enteritis induction. This study provides a theoretical foundation for largemouth bass feed formulation optimization and fish enteritis control.
Collapse
Affiliation(s)
- Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yukang Nie
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Boran Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiajie Xue
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kun Xue
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xixuan Huang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; Research Institute of Huanong-Tianchen, Wuhan, 430070, China.
| |
Collapse
|
4
|
Wang Y, Li H, Li C, Tang W, Wang Y, Hou H. Transcriptome Analysis of Environmental Adaptation of Largemouth Bass ( Micropterus salmonides). Genes (Basel) 2025; 16:267. [PMID: 40149419 PMCID: PMC11942557 DOI: 10.3390/genes16030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The largemouth bass (Micropterus salmonides) is a farmed fish of significant economic value, and studying its adaptability is crucial for enhancing the economic benefits of aquaculture. The largemouth bass changes gene expression pattern to rapidly adapt to environmental changes and maintain normal physiological function. METHODS In this study, largemouth bass from two distinct environmental backgrounds-Huzhou and Xingtai-were used as experimental materials, and they have significantly different breeding conditions. Comparative transcriptomics was used to analyze the gene expression patterns in largemouth bass from both backgrounds. RESULTS In the female, there were 1678 differentially expressed genes, of which 541 were upregulated and 1137 were downregulated. Meanwhile, in the male, there were 1287 differentially expressed genes, including 542 upregulated genes and 745 downregulated genes. The differentially expressed genes were mainly enriched in biological processes such as metabolic process, biological regulation, response to stimulus, developmental process, signaling, reproduction and immune system process. The enriched pathways included carbon metabolism, glycolysis/gluconeogenesis, purine metabolism, biosynthesis of amino acids, starch and sucrose metabolism, fructose and mannose metabolism, pyrimidine metabolism, MAPK signaling pathway, spliceosome, protein processing in the endoplasmic reticulum, ribosome biogenesis in eukaryotes, etc. Conclusions: We speculated that largemouth bass in Xingtai may adapt to the environment by downregulating metabolism- and reproduction-related genes and altering the expression of immune-related genes. Our study provided molecular evidence for the adaptation research of largemouth bass and provided a scientific basis for optimizing largemouth bass breeding technology.
Collapse
Affiliation(s)
- Yuao Wang
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054000, China
| | - Huan Li
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054000, China
| | - Chuan Li
- Shahe Bureau of Agriculture and Rural Affairs, Xingtai 054100, China
| | - Weibin Tang
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054000, China
- Hebei Key Laboratory of Digital Freshwater Aquaculture Technology, Xingtai University, Xingtai 054000, China
| | - Yanchao Wang
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054000, China
- Hebei Key Laboratory of Digital Freshwater Aquaculture Technology, Xingtai University, Xingtai 054000, China
| | - Hongxia Hou
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054000, China
- Hebei Key Laboratory of Digital Freshwater Aquaculture Technology, Xingtai University, Xingtai 054000, China
| |
Collapse
|
5
|
Yang S, Zhao J, An N, Li DC, Huang MM, Fei H. Updates on infectious diseases of largemouth bass: A major review. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109976. [PMID: 39427835 DOI: 10.1016/j.fsi.2024.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The largemouth bass (Micropterus salmoides) is native to North America and has now become a crucial economic species in aquaculture. With the rapid development of high-density intensive farming models, the continuous emergence and spread of diseases pose significant challenges to the sustainable development of largemouth bass aquaculture, including Micropterus salmoides rhabdovirus (MSRV), largemouth bass virus (LMBV), Nocardia spp. and Aeromonas spp. Here, we provide a comprehensive overview of the latest research progress on common diseases of largemouth bass, including pathogen isolation and identification, pathological characteristics, morphological features, epidemiological characteristics, pathogen-host interactions, detection and diagnosis, vaccines, and other control technologies. This information will enhance a more comprehensive understanding of the occurrence of diseases in largemouth bass, and provide insights into future research directions, facilitating more effective disease prevention and control. The collaborative progress among rapid detection technology, the interaction mechanism between pathogen and host, and prevention and control techniques will be the curial to achieving green prevention and control of largemouth bass disease and healthy aquaculture in future.
Collapse
Affiliation(s)
- Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jing Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Nan An
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dong-Chun Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Meng-Meng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Luo S, Liang J, Yang G, Lu J, Chen J. The laminin receptor is a receptor for Micropterus salmoides rhabdovirus. J Virol 2024; 98:e0069724. [PMID: 38916400 PMCID: PMC11265286 DOI: 10.1128/jvi.00697-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024] Open
Abstract
Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Sheng Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Jiahui Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Jianfei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Li M, Yang L, Zhang L, Zhang Q, Liu Y. Specific biomarkers and neurons distribution of different brain regions in largemouth bass ( Micropterus salmoides). Front Endocrinol (Lausanne) 2024; 15:1385575. [PMID: 38745953 PMCID: PMC11091468 DOI: 10.3389/fendo.2024.1385575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
The brain regulates multiple physiological processes in fish. Despite this, knowledge about the basic structure and function of distinct brain regions in non-model fish species remains limited due to their diversity and the scarcity of common biomarkers. In the present study, four major brain parts, the telencephalon, diencephalon, mesencephalon and rhombencephalon, were isolated in largemouth bass, Micropterus salmoides. Within these parts, nine brain regions and 74 nuclei were further identified through morphological and cytoarchitectonic analysis. Transcriptome analysis revealed a total of 7153 region-highly expressed genes and 176 region-specifically expressed genes. Genes related to growth, reproduction, emotion, learning, and memory were significantly overexpressed in the olfactory bulb and telencephalon (OBT). Feeding and stress-related genes were in the hypothalamus (Hy). Visual system-related genes were predominantly enriched in the optic tectum (OT), while vision and hearing-related genes were widely expressed in the cerebellum (Ce) region. Sensory input and motor output-related genes were in the medulla oblongata (Mo). Osmoregulation, stress response, sleep/wake cycles, and reproduction-related genes were highly expressed in the remaining brain (RB). Three candidate marker genes were further identified for each brain regions, such as neuropeptide FF (npff) for OBT, pro-melanin-concentrating hormone (pmch) for Hy, vesicular inhibitory amino acid transporter (viaat) for OT, excitatory amino acid transporter 1 (eaat1) for Ce, peripherin (prph) for Mo, and isotocin neurophysin (itnp) for RB. Additionally, the distribution of seven neurotransmitter-type neurons and five types of non-neuronal cells across different brain regions were analyzed by examining the expression of their marker genes. Notably, marker genes for glutamatergic and GABAergic neurons showed the highest expression levels across all brain regions. Similarly, the marker gene for radial astrocytes exhibited high expression compared to other markers, while those for microglia were the least expressed. Overall, our results provide a comprehensive overview of the structural and functional characteristics of distinct brain regions in the largemouth bass, which offers a valuable resource for understanding the role of central nervous system in regulating physiological processes in teleost.
Collapse
Affiliation(s)
- Meijia Li
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
| | - Leshan Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| |
Collapse
|
8
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
9
|
Yi S, Wu Y, Gu X, Cheng Y, Zhang Z, Yuan Z, Xie H, Qian S, Huang M, Fei H, Yang S. Infection dynamic of Micropterus salmoides rhabdovirus and response analysis of largemouth bass after immersion infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108922. [PMID: 37393061 DOI: 10.1016/j.fsi.2023.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Largemouth bass (Micropterus salmoides) is an important economic freshwater aquaculture fish originating from North America. However, the frequent outbreaks of Micropterus salmoides rhabdovirus (MSRV) have seriously limited the healthy development of Micropterus salmoides farming industry. In the present study, a strain of MSRV was isolated and identified from infected largemouth bass by PCR, transmission electron micrograph observation and genome sequences analysis, and tentatively named MSRV-HZ01 strain. Phylogenetic analyses showed that the MSRV-HZ01 presented the highest similarity to MSRV-2021, followed by MSRV-FJ985 and MSRV-YH01. The various tissues of juvenile largemouth bass exhibited significant pathological damage following MSRV-HZ01 immersion infection, and the mortality reached 90%. We also found that intestine was the key organ for MSRV to enter the fish body initially by dynamic analysis of viral infection, and the head kidney was the susceptible tissue of virus. Moreover, the MSRV was also transferred to the external mucosal tissue in later stage of viral infection to achieve horizontal transmission. In addition, the genes of IFN γ and IFN I-C were significantly up-regulated after MSRV infection to exert antiviral functions. The genes of cGAS and Sting might play an important role in the regulation of interferon expression. In conclusion, we investigated the virus infection dynamics and fish response following MSRV immersion infection, which would promote our understanding of the interaction between MSRV and largemouth bass under natural infection.
Collapse
Affiliation(s)
- Shunfa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Youjun Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Xie Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zesheng Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zhenzhen Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Hongbao Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Shichao Qian
- Huzhou Baijiayu Biotech Co., Ltd., 313000, Huzhou, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
An Evaluation of Laminarin Additive in the Diets of Juvenile Largemouth Bass ( Micropterus salmoides): Growth, Antioxidant Capacity, Immune Response and Intestinal Microbiota. Animals (Basel) 2023; 13:ani13030459. [PMID: 36766348 PMCID: PMC9913627 DOI: 10.3390/ani13030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
A 28 day feeding trial was conducted to investigate the growth performance, immune response and intestinal microbiota of laminarin (LAM) supplemented diets in juvenile largemouth bass (Micropterus salmoides). Four hundred and eighty fish (initial average weight: 0.72 ± 0.04 g) were randomly divided into four groups (40 fish per tank with three replicates in each group) Four diets were prepared with LAM supplementation at the doses of 0 (control), 5 g Kg-1 (LL), 10 g Kg-1 (ML) and 15 g Kg-1 (HL), respectively. No significant difference in the specific growth rate (SGR) and hepatosomatic index (HSI) was observed in fish among the four groups, or in the lipid and ash content of fish flesh. In addition, fish in the LL group exhibited much higher antioxidant capacity (p < 0.05), while the diets with the inclusion of 5 and 10 g Kg-1 LAM remarkably decreased the antioxidant capacity of fish (p > 0.05). Dietary LAM at the dose of 5 g Kg-1 inhibited the transcription of interleukin-1β (il-1β) and tumor necrosis factor-α (tnf-α), while promoting the expression of transforming growth factor-β (tgf-β) in fish intestine. Moreover, the beneficial intestinal bacteria Bacteroide, Comamonas and Mycoplasma abundance significantly increased in fish from the LL group, while the content of opportunistic pathogens Plesiomonas, Aeromonas and Brevinema in fish of the HL group was substantially higher than the control group. Overall, the appropriate dose of supplemented LAM in the diet was 5 g Kg-1, while an excessive supplementation of LAM in the diet led to microbial community instability in largemouth bass.
Collapse
|