1
|
Liu Z, Deng X, Wang Z, Guo Y, Hameed MMA, El-Newehy M, Zhang J, Shi X, Shen M. A biomimetic therapeutic nanovaccine based on dendrimer-drug conjugates coated with metal-phenolic networks for combination therapy of nasopharyngeal carcinoma: an in vitro investigation. J Mater Chem B 2025; 13:5440-5452. [PMID: 40241472 DOI: 10.1039/d5tb00226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Developing a minimally invasive and potent therapy for nasopharyngeal carcinoma is still challenging. In this study, we report a photothermal nanovaccine based on phenylboronic acid (PBA)-modified poly(amidoamine) dendrimers of generation 5 (G5) attached with indocyanine green (ICG) as a photothermal agent, toyocamycin (Toy) as an endoplasmic reticulum stress (ERS) drug, and Mn2+-coordinated metal-phenolic networks. The developed nanocomplexes are camouflaged with homologous apoptotic cancer cell membranes, leveraging membrane proteins as an antigenic reservoir and incorporating the immune adjuvant cytosine-guanine (CpG) oligonucleotide to obtain the final nanovaccine formulation. The prepared nanovaccine with a size of 72.4 nm displays satisfactory colloidal stability and photothermal conversion efficiency (36.7%), and is capable of targeting cancer cells and inducing apoptosis under laser irradiation through combined ICG-mediated photothermal therapy, Toy-enabled chemotherapy and Mn2+-mediated chemodynamic therapy. Meanwhile, the combined therapeutic effects can elicit immune responses to mature dendritic cells through the immunogenic cell death of cancer cells and the inserted CpG adjuvant/apoptotic cancer cell membranes, and polarize tumor-associated macrophage cells to the antitumor M1 phenotype. The antitumor efficacy of the nanomedicine platform was proven by the test of the penetration and therapeutic inhibition of 3-dimensional tumor spheroids in vitro. The developed functional nanomedicine integrated with different therapeutic modes may be developed as a biomimetic therapeutic nanovaccine for nasopharyngeal carcinoma treatment.
Collapse
Affiliation(s)
- Zhiyun Liu
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaochun Deng
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhiqiang Wang
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yunqi Guo
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jianjun Zhang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Xiangyang Shi
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mingwu Shen
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Bahlol HS, Zhang K, Deng J, Zhang W, Ma Z, Zhang J, Han H. Biomimetic Copper-Based Nanoplatform for Enhanced Tumor Targeting and Effective Melanoma Therapy. ACS APPLIED BIO MATERIALS 2025; 8:3290-3299. [PMID: 40186581 DOI: 10.1021/acsabm.5c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Designing advanced biomimetic nanoplatforms that combine photothermal therapy (PTT) and immune activation represents a modern approach to addressing the challenges of cancer therapy. This study presents a nanobiomimetic hollow copper-sulfide (HCuS) platform for precise homotypic tumor targeting and melanoma treatment. The HCuS@OVA@CM (COC) nanoplatform-encapsulated ovalbumin (OVA) antigen protein within HCuS nanoparticles and was coated with melanoma cell membranes (B16F10). Importantly, this design facilitates specific tumor accumulation and achieves 16.0% photothermal conversion efficiency under 1064 nm NIR-II irradiation, which is a key factor for therapeutic success. In vitro studies have demonstrated that this nanoplatform induces immunogenic cell death (ICD), enhances antigen presentation, and stimulates dendritic cell (DCs) maturation. In vivo experiments confirmed that COC-mediated NIR-II photothermal treatment significantly suppressed tumor growth without notable body weight loss. This biomimetic nanoplatform approach offers a targeted, enhanced, and effective immune response for tumor photothermal immunotherapy, making it a promising candidate for advanced melanoma treatment and anticancer therapy.
Collapse
Affiliation(s)
- Hagar Shendy Bahlol
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Kai Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiamin Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiyun Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaoyu Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Wang B, Peng X, Li J, Wang Y, Chen L, Wu M, Zhang Y, Wang W, Feng D, Tang S, Zhang L, Zhan X. Personalized mRNA vaccine combined with PD-1 inhibitor therapy in a patient with advanced esophageal squamous cell carcinoma. Am J Cancer Res 2024; 14:3896-3904. [PMID: 39267685 PMCID: PMC11387870 DOI: 10.62347/nvfb3780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Therapeutic cancer vaccines are valuable tools for educating the immune system to fight tumors precisely. Cancer cells are characterized with genetic instability and abundant somatic mutations, leading to the production of tumor specific antigens (TSA) called neoantigens. The main goal of neoantigen-based cancer vaccines is to activate the immune system and elicit effective tumor-specific T-cell responses. There have been no reports of advanced esophageal squamous cell carcinoma (ESCC) cases achieving partial remission after personalized mRNA (messenger RNA) vaccine treatment. As personalized neoantigen-based immunotherapies are emerging, here we report a 67-year-old male patient diagnosed with ESCC and multiple enlarged mediastinal lymph nodes, where mRNA vaccines were used for the first time. Tissue samples from the recurrence focus in the esophagus were subjected to whole transcriptome sequencing. The neoantigens were identified by bioinformatics analyses. The top 20 neoantigens were selected to compose the polyneoantigen vaccine, which were administered at 1 mg every 3 weeks for 4 cycles in combination with a PD-1 (programmed death-1) inhibitor. The patient was boosted with a single dose of the PD-1 inhibitor 8 weeks after the 4th cycle. In addition, immune responses were evaluated before and after the 4 cycles of vaccine therapy, and the lesions were evaluated by imaging examination. Our results revealed that neoantigen-based vaccines significantly activated the tumour-specific immune response. TCR (T cell receptor) V-J pairing analysis showed an increase in the abundance of oligoclonal TCRs, indicating improved homogeneity. No grade 3 or higher drug-related adverse events were observed, except for grade 4 thrombocytopenia caused by PD-1 inhibitor treatment. The patient achieved a partial response (PR), with a progression-free survival (PFS) time of 457 days, the OS (overall survival) time of 457 days, and DOR (duration of response) of 377 days. Our report suggests that combining the personalized mRNA vaccine therapy with PD-1 blockade therapy may be an effective treatment strategy for patient with advanced esophageal cancer. However, further clinical trials are necessary to confirm the efficacy and safety of personalized neoantigen-based immunotherapies in the treatment of advanced ESCC. This trial is registered with ClinicalTrials.gov, NCT03468244 on March 16, 2018, and is now complete.
Collapse
Affiliation(s)
- Bin Wang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Jie Li
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Yiran Wang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Longpei Chen
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Yingyi Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Wei Wang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Shuhui Tang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Linli Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Wang H, Bo W, Feng X, Zhang J, Li G, Chen Y. Strategies and Recent Advances on Improving Efficient Antitumor of Lenvatinib Based on Nanoparticle Delivery System. Int J Nanomedicine 2024; 19:5581-5603. [PMID: 38882543 PMCID: PMC11177867 DOI: 10.2147/ijn.s460844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jinliang Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ge Li
- Department of Emergency, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Chen W, Tang C, Chen G, Li J, Li N, Zhang H, Di L, Wang R. Boosting Checkpoint Immunotherapy with Biomimetic Nanodrug Delivery Systems. Adv Healthc Mater 2024; 13:e2304284. [PMID: 38319961 DOI: 10.1002/adhm.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Immune checkpoint blockade (ICB) has achieved unprecedented progress in tumor immunotherapy by blocking specific immune checkpoint molecules. However, the high biodistribution of the drug prevents it from specifically targeting tumor tissues, leading to immune-related adverse events. Biomimetic nanodrug delivery systems (BNDSs) readily applicable to ICB therapy have been widely developed at the preclinical stage to avoid immune-related adverse events. By exploiting or mimicking complex biological structures, the constructed BNDS as a novel drug delivery system has good biocompatibility and certain tumor-targeting properties. Herein, the latest findings regarding the aforementioned therapies associated with ICB therapy are highlighted. Simultaneously, prospective bioinspired engineering strategies can be designed to overcome the four-level barriers to drug entry into lesion sites. In future clinical translation, BNDS-based ICB combination therapy represents a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Chenlu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Guijin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Hanwen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| |
Collapse
|
6
|
Zhang M, Zhang Y, Hang L, Zhang T, Luo C, Li W, Sun Y, Wen H, Chen Y, Jiang G, Ma X. Bionic nanotheranostic for multimodal imaging-guided NIR-II-photothermal cancer therapy. NANOSCALE 2024; 16:6095-6108. [PMID: 38444228 DOI: 10.1039/d4nr00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
In photothermal therapy (PTT), the photothermal conversion of the second near-infrared (NIR-II) window allows deeper penetration and higher laser irradiance and is considered a promising therapeutic strategy for deep tissues. Since cancer remains a leading cause of deaths worldwide, despite the numerous treatment options, we aimed to develop an improved bionic nanotheranostic for combined imaging and photothermal cancer therapy. We combined a gold nanobipyramid (Au NBP) as a photothermal agent and MnO2 as a magnetic resonance enhancer to produce core/shell structures (Au@MnO2; AM) and modified their surfaces with homologous cancer cell plasma membranes (PM) to enable tumour targeting. The performance of the resulting Au@MnO2@PM (AMP) nanotheranostic was evaluated in vitro and in vivo. AMP exhibits photothermal properties under NIR-II laser irradiation and has multimodal in vitro imaging functions. AMP enables the computed tomography (CT), photothermal imaging (PTI), and magnetic resonance imaging (MRI) of tumours. In particular, AMP exhibited a remarkable PTT effect on cancer cells in vitro and inhibited tumour cell growth under 1064 nm laser irradiation in vivo, with no significant systemic toxicity. This study achieved tumour therapy guided by multimodal imaging, thereby demonstrating a novel strategy for the use of bionic gold nanoparticles for tumour PTT under NIR-II laser irradiation.
Collapse
Affiliation(s)
- Meng Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China.
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Yuxuan Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China.
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chuangcai Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China.
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wuming Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hua Wen
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Yiyu Chen
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Guihua Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China.
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Xiaofen Ma
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
7
|
Hu T, Huang Y, Liu J, Shen C, Wu F, He Z. Biomimetic Cell-Derived Nanoparticles: Emerging Platforms for Cancer Immunotherapy. Pharmaceutics 2023; 15:1821. [PMID: 37514008 PMCID: PMC10383408 DOI: 10.3390/pharmaceutics15071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy can significantly prevent tumor growth and metastasis by activating the autoimmune system without destroying normal cells. Although cancer immunotherapy has made some achievements in clinical cancer treatment, it is still restricted by systemic immunotoxicity, immune cell dysfunction, cancer heterogeneity, and the immunosuppressive tumor microenvironment (ITME). Biomimetic cell-derived nanoparticles are attracting considerable interest due to their better biocompatibility and lower immunogenicity. Moreover, biomimetic cell-derived nanoparticles can achieve different preferred biological effects due to their inherent abundant source cell-relevant functions. This review summarizes the latest developments in biomimetic cell-derived nanoparticles for cancer immunotherapy, discusses the applications of each biomimetic system in cancer immunotherapy, and analyzes the challenges for clinical transformation.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuezhou Huang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chao Shen
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|