1
|
Pacheco Sanchez G, Lopez M, Velez LM, Tamburini I, Ujagar N, Ayala J, Robles GD, Choi H, Arriola J, Kapadia R, Zonderman AB, Evans MK, Jang C, Seldin MM, Nicholas DA. Comparative analysis of White and African American groups reveals unique lipid and inflammatory features of diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317202. [PMID: 39606357 PMCID: PMC11601720 DOI: 10.1101/2024.11.13.24317202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Importance African Americans have a higher prevalence of Type 2 Diabetes (T2D) compared to White groups. T2D is a health disparity clinically characterized by dysregulation of lipids and chronic inflammation. However, how the relationships among biological and sociological predictors of T2D drive this disparity remains to be addressed. Objective To determine characteristic plasma lipids and systemic inflammatory biomarkers contributing to diabetes presentation between White and African American groups. Design We performed a cross-sectional retrospective cohort study using pre-existing demographic and clinical data from two diverse studies: Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) and AllofUs. From HANDLS (N=40), we used information from wave 1 (2004). From AllofUs (N=17,339), we used data from the Registered Tier Dataset v7, available in the AllofUs researcher workbench. Setting HANDLS is a population-based cohort study involving 3720 participants in the Baltimore area supported by the Intramural Research Program of the National Institute on Aging. HANDLS is a longitudinal study designed to understand the sources of persistent health disparities in overall longevity and chronic disease in White and African American individuals. The AllofUs study is an NIH funded multicenter study consisting of patient-level data from 331,382 individuals from 35 hospitals in the United States aimed at sampling one million or more people living in the United States to provide a collection of broadly accessible data. Participants The HANDLS subcohort participants (N=40) were divided into four groups equally distributed by race, sex, and diabetes status. Groups were also matched by age, body mass index, and poverty status. The analysis pipeline consisted of evaluating the significance of the variables race and disease status using the 2-way ANOVA test and post-ANOVA comparisons using Fisher LSD test, reporting unadjusted p-values. Additionally, unsupervised (PCA) and supervised (OPLS-DA) clustering analysis was performed to determine putative biological drivers of variability and main immunological and metabolic features characterizing diabetes in White and African American groups from HANDLS. Major clinical findings were validated in a large cohort of White and African American groups with T2D in the AllofUS research study (N=17,339). AllofUs groups were of similar range in age and BMI as HANDLS. Furthermore, a linear regression model was built adjusting for age and BMI to determine differences in clinical findings between White and African American groups with T2D. Main Outcomes and Measures Primary outcomes using a HANDLS subcohort (N=40) were clinical parameters related to diabetes, plasma lipids determined by lipidomics and measured by mass spectrometry, and cytokine profiling using a customized panel of 52 cytokines and growth factors measured by Luminex. Outcomes evaluated in the AllofUs study (N=17,339) were clinical: cholesterol to HDL ratio, triglycerides, fasting glucose, insulin, and hemoglobin A1C. Results In the HANDLS subcohort, White individuals with diabetes had elevated cholesterol to HDL ratio (mean difference -1.869, p =0.0053 ) , high-sensitivity C-reactive protein (mean difference -9.135, p =0.0040), and clusters of systemic triglycerides measured by lipidomics, compared to White individuals without diabetes. These clinical markers of dyslipidemia (cholesterol to HDL ratio and triglycerides) and inflammation (hs-CRP) were not significantly elevated in diabetes in African Americans from the HANDLS subcohort. These results persisted even when controlling for statin use. Diabetes in White individuals in the HANDLS cohort was characterized by a marked elevation in plasma lipids, while an inflammatory status characterized by Th17-cytokines was predominant in the African American group from the HANDLS subcohort. We validated the key findings of elevated triglycerides and cholesterol to HDL ratio in White individuals with T2D in a sample (N=17,339) of the AllofUs study. Conclusions and Relevance Our results show that diabetes can manifest with healthy lipid profiles, particularly in these cohorts of African Americans. This study suggests that Th17-inflammation associated with diabetes is characteristic of African Americans, while a more classic inflammation is distinctive of White individuals from HANDLS cohort. Further, clinical markers of dyslipidemia seem to characterize diabetes presentation only in White groups, and not in African Americans.
Collapse
|
2
|
Zhou Z, Xu M, Xiong P, Yuan J, Zheng D, Piao S. Prognosis and outcome of latent autoimmune diabetes in adults: T1DM or T2DM? Diabetol Metab Syndr 2024; 16:242. [PMID: 39375804 PMCID: PMC11457386 DOI: 10.1186/s13098-024-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Latent Autoimmune Diabetes in Adults (LADA) is a type of diabetes mellitus often overlooked in clinical practice for its dual resemblance to Type 1 Diabetes Mellitus (T1DM) in pathogenesis and to Type 2 Diabetes Mellitus (T2DM) in clinical presentation. To better understand LADA's distinctiveness from T1DM and T2DM, we conducted a comprehensive review encompassing etiology, pathology, clinical features, treatment modalities, and prognostic outcomes. With this comparative lens, we propose that LADA defies simple classification as either T1DM or T2DM. The specific treatments for the disease are limited and should be based on the therapies of T1DM or T2DM that address specific clinical issues at different stages of the disease. It is crucial to identify LADA cases potentially misdiagnosed as T2DM, warranting prompt screening for poor blood sugar control, short-term blood sugar deterioration, and other conditions. If the prognosis for LADA is similar to T2DM, it can be managed as T2DM. However, if the prognosis fundamentally differs, early LADA screening is crucial to optimize patient outcomes and enhance research on tailored treatments. The pathogenesis of LADA is clear, so the prognosis may be the key to determining whether it can be classified as T2DM, which is also the direction of future research. On the one hand, this paper aims to provide suggestions for the clinical screening and treatment of LADA based on the latest progress and provide worthy directions for future research on LADA.
Collapse
Affiliation(s)
- Zhipeng Zhou
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Xu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Pingjie Xiong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Yuan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Deqing Zheng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shenghua Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Zhang Z, Luo S, Xiao Z, Yin W, Shi X, Chen H, Xie Z, Liu Z, Li X, Zhou Z. Hsa_circRNA_405498 and hsa_circRNA_100033 Serve as Potential Biomarkers for Differential Diagnosis of Type 1 Diabetes. J Clin Endocrinol Metab 2024; 109:1464-1473. [PMID: 38157408 DOI: 10.1210/clinem/dgad761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/22/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
CONTEXT The role of circular RNAs (circRNAs) in type 1 diabetes (T1D) is largely unknown. OBJECTIVE We aimed to identify some circRNAs as differential diagnostic biomarkers for T1D to distinguish between patients with latent autoimmune diabetes in adults (LADA) and type 2 diabetes (T2D). METHODS The circRNA expression profiles were determined by Arraystar human circRNA microarray in T1D compared to controls (n = 6 each). The differentially expressed circRNAs were validated by real-time quantitative polymerase chain reaction using a validation cohort with 20 T1D and 20 controls. The diagnostic performances of the candidate circRNAs and the clinical parameters were assessed using the logistic least absolute shrinkage and selection operator (LASSO) regression model in a larger cohort with 457 individuals, including patients with T1D, T2D, and LADA, and controls. RESULTS We identified 110 differentially expressed circular transcripts (53 upregulated and 57 downregulated) in T1D patients compared with controls. Further analysis showed that the levels of hsa_circRNA_405498 and hsa_circRNA_100033 were significantly downregulated in T1D compared to controls (both P < .05). Moreover, the expression levels of these 2 circRNAs showed sequential downregulation from controls, patients with T2D, LADA, to T1D (P < .05). The area under the curve (AUC) of receiver operating characteristic plots in logistic LASSO regression model showed high diagnostic accuracy for combination model with the 2 circRNAs and some clinical parameters in distinguishing T1D from LADA (AUC = 0.915), T2D (AUC = 0.993), and controls (AUC = 0.992). CONCLUSION Our study demonstrated that hsa_circRNA_405498 and hsa_circRNA_100033 are promising novel differential diagnostic biomarkers for T1D.
Collapse
Affiliation(s)
- Ziwei Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zilin Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenfeng Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiajie Shi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hongzhi Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
4
|
Kalantar GH, Saraswat S, SantaCruz-Calvo S, Gholamrezaeinejad F, Javidan A, Agrawal M, Liu R, Kern PA, Zhang XD, Nikolajczyk BS. Fasting and Glucose Metabolism Differentially Impact Peripheral Inflammation in Human Type 2 Diabetes. Nutrients 2024; 16:1404. [PMID: 38794641 PMCID: PMC11124302 DOI: 10.3390/nu16101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Cytokines produced by peripheral T-helper 1/17 cells disproportionately contribute to the inflammation (i.e., metaflammation) that fuels type 2 diabetes (T2D) pathogenesis. Shifts in the nutrient milieu could influence inflammation through changes in T-cell metabolism. We aimed to determine whether changes in glucose utilization alter cytokine profiles in T2D. Peripheral blood mononuclear cells (PBMCs), CD4+ T-cells, and CD4+CD25- T-effector (Teff) cells were isolated from age-matched humans classified by glycemic control and BMI. Cytokines secreted by CD3/CD28-stimulated PBMCs and Teff were measured in supernatants with multiplex cytokine assays and a FLEXMAP-3D. Metabolic activity of stimulated CD4+ T-cells was measured by a Seahorse XFe96 analyzer. In this study, we demonstrated that T-cell stimulated PBMCs from non-fasted people with T2D produced higher amounts of cytokines compared to fasting. Although dysglycemia characterizes T2D, cytokine production by PBMCs or CD4+ T-cells in T2D was unaltered by hyperglycemic media. Moreover, pharmacological suppression of mitochondrial glucose oxidation did not change T-cell metabolism in T2D, yet enhanced cytokine competency. In conclusion, fasting and glucose metabolism differentially impact peripheral inflammation in human T2D, suggesting that glucose, along with fatty acid metabolites per our previous work, partner to regulate metaflammation. These data expose a major disconnect in the use of glycemic control drugs to target T2D-associated metaflammation.
Collapse
Affiliation(s)
- Gabriella H. Kalantar
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA;
| | - Shubh Saraswat
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA; (S.S.); (X.D.Z.)
| | - Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Fatemeh Gholamrezaeinejad
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Aida Javidan
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Madhur Agrawal
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Philip A. Kern
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaohua Douglas Zhang
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA; (S.S.); (X.D.Z.)
| | - Barbara S. Nikolajczyk
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
5
|
Guo M, Guo H, Zhu J, Wang F, Chen J, Wan C, Deng Y, Wang F, Xu L, Chen Y, Li R, Liu S, Zhang L, Wang Y, Zhou J, Li S. A novel subpopulation of monocytes with a strong interferon signature indicated by SIGLEC-1 is present in patients with in recent-onset type 1 diabetes. Diabetologia 2024; 67:623-640. [PMID: 38349399 DOI: 10.1007/s00125-024-06098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 03/01/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is a T cell-mediated autoimmune disease characterised by pancreatic beta cell destruction. In this study, we explored the pathogenic immune responses in initiation of type 1 diabetes and new immunological targets for type 1 diabetes prevention and treatment. METHODS We obtained peripheral blood samples from four individuals with newly diagnosed latent autoimmune diabetes in adults (LADA) and from four healthy control participants. Single-cell RNA-sequencing (scRNA-seq) was performed on peripheral blood mononuclear cells to uncover transcriptomic profiles of early LADA. Validation was performed through flow cytometry in a cohort comprising 54 LADA, 17 adult-onset type 2 diabetes, and 26 healthy adults, matched using propensity score matching (PSM) based on age and sex. A similar PSM method matched 15 paediatric type 1 diabetes patients with 15 healthy children. Further flow cytometry analysis was performed in both peripheral blood and pancreatic tissues of non-obese diabetic (NOD) mice. Additionally, cell adoptive transfer and clearance assays were performed in NOD mice to explore the role of this monocyte subset in islet inflammation and onset of type 1 diabetes. RESULTS The scRNA-seq data showed that upregulated genes in peripheral T cells and monocytes from early-onset LADA patients were primarily enriched in the IFN signalling pathway. A new cluster of classical monocytes (cluster 4) was identified, and the proportion of this cluster was significantly increased in individuals with LADA compared with healthy control individuals (11.93% vs 5.93%, p=0.017) and that exhibited a strong IFN signature marked by SIGLEC-1 (encoding sialoadhesin). These SIGLEC-1+ monocytes expressed high levels of genes encoding C-C chemokine receptors 1 or 2, as well as genes for chemoattractants for T cells and natural killer cells. They also showed relatively low levels of genes for co-stimulatory and HLA molecules. Flow cytometry analysis verified the elevated levels of SIGLEC-1+ monocytes in the peripheral blood of participants with LADA and paediatric type 1 diabetes compared with healthy control participants and those with type 2 diabetes. Interestingly, the proportion of SIGLEC-1+ monocytes positively correlated with disease activity and negatively with disease duration in the LADA patients. In NOD mice, the proportion of SIGLEC-1+ monocytes in the peripheral blood was highest at the age of 6 weeks (16.88%), while the peak occurred at 12 weeks in pancreatic tissues (23.65%). Adoptive transfer experiments revealed a significant acceleration in diabetes onset in the SIGLEC-1+ group compared with the SIGLEC-1- or saline control group. CONCLUSIONS/INTERPRETATION Our study identified a novel group of SIGLEC-1+ monocytes that may serve as an important indicator for early diagnosis, activity assessment and monitoring of therapeutic efficacy in type 1 diabetes, and may also be a novel target for preventing and treating type 1 diabetes. DATA AVAILABILITY RNA-seq data have been deposited in the GSA human database ( https://ngdc.cncb.ac.cn/gsa-human/ ) under accession number HRA003649.
Collapse
Affiliation(s)
- Mengqi Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Han Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianni Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yujie Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ran Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Qingdao, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Song R, Xie L, Ding J, Chen Y, Zou H, Pang H, Peng Y, Xia Y, Xie Z, Li X, Xiao Y, Zhou Z, Hu J. Association of RPS26 gene polymorphism with different types of diabetes in Chinese individuals. J Diabetes Investig 2024; 15:34-43. [PMID: 38041572 PMCID: PMC10759724 DOI: 10.1111/jdi.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
AIMS/INTRODUCTION Different types of diabetes show distinct genetic characteristics, but the specific genetic susceptibility factors remain unclear. Our study aimed to explore the associations between the ribosomal protein S26 (RPS26) gene rs1131017 polymorphisms and susceptibility to type 1 diabetes mellitus, latent autoimmune diabetes in adults (LADA) and type 2 diabetes mellitus in the Chinese Han population, and their correlations with clinical features. MATERIALS AND METHODS Genotyping of the rs1131017 variant was carried out for 1,006 type 1 diabetes mellitus patients, 210 LADA patients, 642 type 2 diabetes mellitus patients and 2,099 control individuals. RESULTS We found that the rs1131017 C allele was a risk locus for both type 1 diabetes mellitus and LADA (odds ratio [OR] 1.50, 95% confidence interval [CI] 1.33-1.69, P < 0.001; OR 1.31, 95% CI 1.04-1.64, P = 0.021, respectively). Nevertheless, this association was not found for type 2 diabetes mellitus. Carrying the C allele genotype was associated with a lower postprandial C-peptide for type 1 diabetes mellitus (OR 1.41, 95% CI 1.11-1.80, P = 0.006) and lower fasting C-peptide for LADA (OR 1.55, 95% CI 1.01-2.38, P = 0.047). Interestingly, a lower GC frequency was noted for LADA than for type 1 diabetes mellitus, regardless of classification based on age at diagnosis, C-peptide or glutamic acid decarboxylase antibody positivity. CONCLUSIONS The RPS26 polymorphism was associated with susceptibility and clinical characteristics of type 1 diabetes mellitus and LADA in the Chinese population, but was not related to type 2 diabetes mellitus. Thus, it might serve as a novel biomarker for particular types of diabetes.
Collapse
Affiliation(s)
- Rong Song
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jin Ding
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Hailan Zou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yiman Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
7
|
Li Z, Zhao M, Li J, Luo W, Huang J, Huang G, Xie Z, Xiao Y, Huang J, Li X, Zhao B, Zhou Z. Elevated glucose metabolism driving pro-inflammatory response in B cells contributes to the progression of type 1 diabetes. Clin Immunol 2023; 255:109729. [PMID: 37562723 DOI: 10.1016/j.clim.2023.109729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the immune system's failure to maintain self-tolerance, resulting in the autoimmune destruction of pancreatic beta cells. Although T1D has conventionally been viewed as a T-cell-dominant disease, recent research has emphasized the contribution of B cells in the onset of the disease. However, the mechanism underlying aberrant B cell responses remains unknown. B cell metabolism is a crucial prerequisite for B cell function and the development of adaptive immune responses. Here, we investigated the metabolic features of B cells, first in a cross-sectional cohort and subsequently in non-obese diabetic (NOD) mice, and revealed that there is an increased frequency of high-glucose-avidity (2-NBDGhigh) B cell population that may contribute to T1D progression. Further characterization of the metabolic, transcriptional and functional phenotype of B cells in NOD mice found that elevated glucose avidity is associated with a greater capacity for co-stimulation, proliferation and inflammatory cytokine production. Mechanistically, elevated Myc signaling orchestrated the glucose metabolism and the pro-inflammatory response of B cells in T1D. In vitro experiments demonstrated that pharmacological inhibition of glucose metabolism using metformin and 2-DG reduced pro-inflammatory cytokine production and B cell proliferation. Moreover, the combination of these inhibitors successfully delayed insulitis development, onset of diabetes, and improved high blood glucose levels in streptozotocin (STZ)-induced diabetic mice model. Taken together, our work has uncovered these high-glucose-avidity B cells as novel adjuvant diagnostic and therapeutic targets for T1D.
Collapse
Affiliation(s)
- Zeying Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingyue Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjun Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China; Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China; Furong Laboratory, Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
8
|
Fu X, Xu Z, Tan Q, Wei W, Wang Z. Association between a high triglyceride-glucose index and chronic kidney disease in adult patients with latent autoimmune diabetes. BMC Endocr Disord 2023; 23:209. [PMID: 37770895 PMCID: PMC10540360 DOI: 10.1186/s12902-023-01465-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) is one of the risk factors for chronic kidney disease (CKD) and diabetes. The triglyceride-glucose (TyG) index is considered a reliable alternative marker of IR. We investigated the correlation between the TyG index and the severity of CKD in patients with latent autoimmune diabetes in adults (LADA). METHODS This cross-sectional study included 288 patients with LADA in the department of endocrinology at our hospital between January 2018 and January 2022. The TyG index was calculated as Ln [TG (mg/dl) × fasting blood glucose (FBG) (mg/dl) / 2]. All individuals were divided into either a LADA + CKD group or a LADA + non-CKD group according to the presence or absence of CKD. A correlation analysis, logistic regression analysis and receiver operating characteristics curve analysis were performed. RESULTS A total of 130 (45.1%) participants were identified as having CKD. Compared with the non-CKD group, the CKD group had a longer disease duration and a higher proportion of smokers; patients were more likely to have hypertension and higher serum creatinine, triglyceride, cholesterol, low-density lipoprotein cholesterol, FBG, uric acid estimated glomerular filtration rates (eGFR) and TyG levels as well as lower high-density lipoprotein cholesterol levels (all P < 0.05). The positive relationship between the TyG index and the urinary albumin/creatinine ratio was significant (r = 0.249, P = 0.010). There was also a significant correlation between the TyG index and the eGFR (r = - 0.211, P = 0.034) after adjusting for confounding factors. The area-under-the-curve value of the TyG index was 0.708 (95% confidence interval: 0.61-0.81, P < 0.001). CONCLUSIONS The TyG index is significantly associated with the severity of CKD in patients with LADA. This conclusion supports the clinical application of the TyG index for the assessment of kidney disease in patients with LADA.
Collapse
Affiliation(s)
- Xiuli Fu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 of Shengli Street, Jiangan District, Wuhan, 430061, China
| | - Zihui Xu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 of Shengli Street, Jiangan District, Wuhan, 430061, China
| | - Qin Tan
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 of Shengli Street, Jiangan District, Wuhan, 430061, China
| | - Wei Wei
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 of Shengli Street, Jiangan District, Wuhan, 430061, China
| | - Zhongjing Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 of Shengli Street, Jiangan District, Wuhan, 430061, China.
| |
Collapse
|
9
|
Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1149239. [PMID: 37056675 PMCID: PMC10086443 DOI: 10.3389/fendo.2023.1149239] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Insulin resistance (IR) plays a crucial role in the development and progression of metabolism-related diseases such as diabetes, hypertension, tumors, and nonalcoholic fatty liver disease, and provides the basis for a common understanding of these chronic diseases. In this study, we provide a systematic review of the causes, mechanisms, and treatments of IR. The pathogenesis of IR depends on genetics, obesity, age, disease, and drug effects. Mechanistically, any factor leading to abnormalities in the insulin signaling pathway leads to the development of IR in the host, including insulin receptor abnormalities, disturbances in the internal environment (regarding inflammation, hypoxia, lipotoxicity, and immunity), metabolic function of the liver and organelles, and other abnormalities. The available therapeutic strategies for IR are mainly exercise and dietary habit improvement, and chemotherapy based on biguanides and glucagon-like peptide-1, and traditional Chinese medicine treatments (e.g., herbs and acupuncture) can also be helpful. Based on the current understanding of IR mechanisms, there are still some vacancies to follow up and consider, and there is also a need to define more precise biomarkers for different chronic diseases and lifestyle interventions, and to explore natural or synthetic drugs targeting IR treatment. This could enable the treatment of patients with multiple combined metabolic diseases, with the aim of treating the disease holistically to reduce healthcare expenditures and to improve the quality of life of patients to some extent.
Collapse
Affiliation(s)
| | | | | | | | - Hangyu Ji
- *Correspondence: Fengmei Lian, ; Hangyu Ji,
| | | |
Collapse
|