1
|
Galota F, Marcheselli S, De Biasi S, Gibellini L, Vitetta F, Fiore A, Smolik K, De Napoli G, Cardi M, Cossarizza A, Ferraro D. Impact of High-Efficacy Therapies for Multiple Sclerosis on B Cells. Cells 2025; 14:606. [PMID: 40277931 PMCID: PMC12025603 DOI: 10.3390/cells14080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative autoimmune disorder of the central nervous system characterized by demyelination and neurodegeneration. Traditionally considered a T-cell-mediated disease, the crucial role of B lymphocytes in its pathogenesis, through different mechanisms contributing to inflammation and autoreactivity, is increasingly recognized. The risk of long-term disability in MS patients can be reduced by an early treatment initiation, in particular with high-efficacy therapies. The aim of this review is to provide an overview of the mechanisms of action of high-efficacy therapies for MS, with a focus on their impact on B cells and how this contributes to the drugs' efficacy and safety profiles. Anti-CD20 monoclonal antibodies, Alemtuzumab, Cladribine and sequestering therapies encompassing Natalizumab and S1P receptors modulators will be discussed and emerging therapies, including Bruton's Tyrosine Kinase inhibitors, will be presented.
Collapse
Affiliation(s)
- Federica Galota
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Simone Marcheselli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
| | - Francesca Vitetta
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| | - Alessia Fiore
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| | - Krzysztof Smolik
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Giulia De Napoli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Martina Cardi
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| | - Diana Ferraro
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| |
Collapse
|
2
|
Awada Z, Hameed N, Harel A. Profile of Ofatumumab in the Treatment of Multiple Sclerosis: Design, Development and Place in Therapy. Drug Des Devel Ther 2024; 18:5985-5996. [PMID: 39687682 PMCID: PMC11648548 DOI: 10.2147/dddt.s315174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024] Open
Abstract
Targeting B cells through monoclonal antibodies against CD20 has emerged as a highly effective strategy in managing disease activity in patients with relapsing forms of multiple sclerosis. This efficacy was initially demonstrated with rituximab and further affirmed with ocrelizumab. Ofatumumab is the first fully human IgG1 monoclonal antibody (mAb) approved for the treatment of MS. It is characterized by its convenient self-administered regimen of once-monthly subcutaneous injections. Its human antibody nature contributes to a significantly lower risk of immunogenicity compared to rituximab. Clinical trials have consistently shown its effectiveness in significantly reducing annualized relapse rates, MRI-detected lesion activity, and disability progression when compared to teriflunomide, a standard therapy for MS. Additionally, ofatumumab exhibits a manageable tolerability profile, with adverse events primarily comprising infections and injection-related reactions. This review describes ofatumumab pharmacology, core clinical trial data and clinical efficacy in addition to safety issues.
Collapse
Affiliation(s)
- Zeinab Awada
- Northwell Comprehensive Multiple Sclerosis Center, Department of Neurology, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Natasha Hameed
- Northwell Comprehensive Multiple Sclerosis Center, Department of Neurology, Long Island Jewish Medical Center/ North Shore University Hospital/ Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Asaff Harel
- Northwell Comprehensive Multiple Sclerosis Center, Department of Neurology, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
- Northwell Comprehensive Multiple Sclerosis Center, Department of Neurology, Long Island Jewish Medical Center/ North Shore University Hospital/ Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| |
Collapse
|
3
|
Al Rahbani GK, Woopen C, Dunsche M, Proschmann U, Ziemssen T, Akgün K. SARS-CoV-2-Specific Immune Cytokine Profiles to mRNA, Viral Vector and Protein-Based Vaccines in Patients with Multiple Sclerosis: Beyond Interferon Gamma. Vaccines (Basel) 2024; 12:684. [PMID: 38932415 PMCID: PMC11209537 DOI: 10.3390/vaccines12060684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Disease-modifying therapies (DMTs) impact the cellular immune response to severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) vaccines in patients with multiple sclerosis (pwMS). In this study, we aim to elucidate the characteristics of the involved antigen-specific T cells via the measurement of broad cytokine profiles in pwMS on various DMTs. We examined SARS-CoV-2-specific T cell responses in whole blood cultures characterized by the release of interleukin (IL)-2, IL-4, IL-5, IL-10, IL-13, IL-17A, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α), as well as antibodies (AB) targeting the SARS-CoV-2 spike protein in pwMS following either two or three doses of mRNA or viral vector vaccines (VVV). For mRNA vaccination non-responders, the NVX-CoV2373 protein-based vaccine was administered, and immune responses were evaluated. Our findings indicate that immune responses to SARS-CoV-2 vaccines in pwMS are skewed towards a Th1 phenotype, characterized by IL-2 and IFN-γ. Additionally, a Th2 response characterized by IL-5, and to a lesser extent IL-4, IL-10, and IL-13, is observed. Therefore, the measurement of IL-2 and IL-5 levels could complement traditional IFN-γ assays to more comprehensively characterize the cellular responses to SARS-CoV-2 vaccines. Our results provide a comprehensive cytokine profile for pwMS receiving different DMTs and offer valuable insights for designing vaccination strategies in this patient population.
Collapse
Affiliation(s)
| | | | | | | | | | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Technical University Dresden, 01307 Dresden, Germany; (G.K.A.R.); (C.W.); (M.D.); (U.P.); (T.Z.)
| |
Collapse
|
4
|
Delgado SR, Faissner S, Linker RA, Rammohan K. Key characteristics of anti-CD20 monoclonal antibodies and clinical implications for multiple sclerosis treatment. J Neurol 2024; 271:1515-1535. [PMID: 37906325 PMCID: PMC10973056 DOI: 10.1007/s00415-023-12007-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/02/2023]
Abstract
The recent success of anti-CD20 monoclonal antibody therapies in the treatment of multiple sclerosis (MS) has highlighted the role of B cells in the pathogenesis of MS. In people with MS, the inflammatory characteristics of B-cell activity are elevated, leading to increased pro-inflammatory cytokine release, diminished anti-inflammatory cytokine production and an accumulation of pathogenic B cells in the cerebrospinal fluid. Rituximab, ocrelizumab, ofatumumab, ublituximab and BCD-132 are anti-CD20 therapies that are either undergoing clinical development, or have been approved, for the treatment of MS. Despite CD20 being a common target for these therapies, differences have been reported in their mechanistic, pharmacological and clinical characteristics, which may have substantial clinical implications. This narrative review explores key characteristics of these therapies. By using clinical trial data and real-world evidence, we discuss their mechanisms of action, routes of administration, efficacy (in relation to B-cell kinetics), safety, tolerability and convenience of use. Clinicians, alongside patients and their families, should consider the aspects discussed in this review as part of shared decision-making discussions to improve outcomes and health-related quality of life for people living with MS.
Collapse
Affiliation(s)
- Silvia R Delgado
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St Josef-Hospital, Bochum, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Kottil Rammohan
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
5
|
Yamout B, Al-Jumah M, Sahraian MA, Almalik Y, Khaburi JA, Shalaby N, Aljarallah S, Bohlega S, Dahdaleh M, Almahdawi A, Khoury SJ, Koussa S, Slassi E, Daoudi S, Aref H, Mrabet S, Zeineddine M, Zakaria M, Inshasi J, Gouider R, Alroughani R. Consensus recommendations for diagnosis and treatment of Multiple Sclerosis: 2023 revision of the MENACTRIMS guidelines. Mult Scler Relat Disord 2024; 83:105435. [PMID: 38245998 DOI: 10.1016/j.msard.2024.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
With evolving diagnostic criteria and the advent of new oral and parenteral therapies for Multiple Sclerosis (MS), most current diagnostic and treatment algorithms need revision and updating. The diagnosis of MS relies on incorporating clinical and paraclinical findings to prove dissemination in space and time and exclude alternative diseases that can explain the findings at hand. The differential diagnostic workup should be guided by clinical and laboratory red flags to avoid unnecessary tests. Appropriate selection of MS therapies is critical to maximize patient benefit. The current guidelines review the current diagnostic criteria for MS and the scientific evidence supporting treatment of acute relapses, radiologically isolated syndrome, clinically isolated syndrome, relapsing remitting MS, progressive MS, pediatric cases and pregnant women. The purpose of these guidelines is to provide practical recommendations and algorithms for the diagnosis and treatment of MS based on current scientific evidence and clinical experience.
Collapse
Affiliation(s)
- B Yamout
- Neurology Institute and Multiple Sclerosis Center, Harley Street Medical Center, Abu Dhabi, United Arab Emirates.
| | - M Al-Jumah
- InterHealth hospital, Multiple Sclerosis Center, Riyadh, Saudi Arabia
| | - M A Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Y Almalik
- Division of Neurology, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, National Guard Health Affairs, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - J Al Khaburi
- Department of Neurology, The Royal Hospital, Sultanate of Oman
| | - N Shalaby
- Neurology Department, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | | | - S Bohlega
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - A Almahdawi
- Consultant Neurologist, Neurology Unit, Baghdad Teaching Hospital, Medical City Complex, Iraq
| | - S J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - S Koussa
- Multiple Sclerosis Center, Geitaoui Lebanese University Hospital, Beirut, Lebanon
| | - E Slassi
- Hôpital Cheikh Khalifa Ibn Zaid, Casablanca, Morocco
| | - S Daoudi
- Hospital Center Nedir Mohamed, Faculty of Medicine, University Mouloud Mammeri Tizi-Ouzou, Algeria
| | - H Aref
- Neurology Department, Ain Shams University, Cairo, Egypt
| | - S Mrabet
- Department of Neurology, CIC, Razi Universitary Hospital, University of Tunis El Manar, Tunis, Tunisia
| | - M Zeineddine
- Middle East and North Africa Committee for Treatment and Research in Multiple Sclerosis (MENACTRIMS), Beirut, Lebanon
| | | | - J Inshasi
- Department of Neurology, Rashid Hospital and Dubai Medical College, Dubai Health Authority, Dubai, United Arab Emirates
| | - R Gouider
- Department of Neurology, CIC, Razi Universitary Hospital, University of Tunis El Manar, Tunis, Tunisia
| | - R Alroughani
- Amiri Hospital, Arabian Gulf Street, Sharq, Kuwait
| |
Collapse
|
6
|
Carlson AK, Amin M, Cohen JA. Drugs Targeting CD20 in Multiple Sclerosis: Pharmacology, Efficacy, Safety, and Tolerability. Drugs 2024; 84:285-304. [PMID: 38480630 PMCID: PMC10982103 DOI: 10.1007/s40265-024-02011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
Currently, there are four monoclonal antibodies (mAbs) that target the cluster of differentiation (CD) 20 receptor available to treat multiple sclerosis (MS): rituximab, ocrelizumab, ofatumumab, and ublituximab. B-cell depletion therapy has changed the therapeutic landscape of MS through robust efficacy on clinical manifestations and MRI lesion activity, and the currently available anti-CD20 mAb therapies for use in MS are a cornerstone of highly effective disease-modifying treatment. Ocrelizumab is currently the only therapy with regulatory approval for primary progressive MS. There are currently few data regarding the relative efficacy of these therapies, though several clinical trials are ongoing. Safety concerns applicable to this class of therapeutics relate primarily to immunogenicity and mechanism of action, and include infusion-related or injection-related reactions, development of hypogammaglobulinemia (leading to increased infection and malignancy risk), and decreased vaccine response. Exploration of alternative dose/dosing schedules might be an effective strategy for mitigating these risks. Future development of biosimilar medications might make these therapies more readily available. Although anti-CD20 mAb therapies have led to significant improvements in disease outcomes, CNS-penetrant therapies are still needed to more effectively address the compartmentalized inflammation thought to play an important role in disability progression.
Collapse
Affiliation(s)
- Alise K Carlson
- Mellen Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Ave U10, Cleveland, OH, 44195, USA
| | - Moein Amin
- Mellen Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Ave U10, Cleveland, OH, 44195, USA
| | - Jeffrey A Cohen
- Mellen Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Ave U10, Cleveland, OH, 44195, USA.
| |
Collapse
|
7
|
Faissner S, Bongert M, Trendelenburg P, Thiel S, Yamamura T, Hellwig K, Gold R. Eomesodermin-expressing CD4+ Th cells and association with pregnancy in multiple sclerosis. Ther Adv Neurol Disord 2024; 17:17562864241229321. [PMID: 38371384 PMCID: PMC10874138 DOI: 10.1177/17562864241229321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
Background Pregnancy in patients with multiple sclerosis (MS) is accompanied by a decline of relapse activity with increased risk of relapses 3 months post-partum, for unknown reasons. Eomesodermin+ T-helper cells (Eomes+ Th cells) are known to mediate neuroinflammation and disease progression in MS and are induced by prolactin-secreting cells. Objectives Here, investigated immune cell alterations and the pathophysiological role of Eomes+ Th cells for disease activity during pregnancy and post-partum in MS. Methods We enrolled n = 81 pregnant patients with relapsing-remitting MS (RRMS), n = 27 post-partum RRMS and n = 26 female RRMS control patients under the umbrella of the German Multiple Sclerosis and Pregnancy Registry. Clinical data were collected and immune cell alterations were analysed using flow cytometry. Results While CD3+CD4+ Th cells were unaffected, CD3+CD8+ cytotoxic T-cells were elevated post-partum (p = 0.02) with reduced B-cell frequencies (p = 0.01) compared to non-pregnant RRMS patients. NK cells were elevated during first trimester (p = 0.02) compared to the third trimester. Frequencies of Eomes+ Th and Eomes+ Tc cells did not differ. There was no correlation of prolactin release and expression of Eomes+ Th cells. However, Eomes+ Th cells correlated with lower frequencies of regulatory T-cells during second (r = -0.42; p < 0.05) and third trimester (r = -0.37; p < 0.05). Moreover, Eomes+ Th cells correlated with frequencies of B-cells during third trimester (r = 0.54; p = 0.02). Frequencies of Eomes+ Th cells were not associated with the number of relapses before pregnancy, during pregnancy or post-partum. However, Eomes+ Th cells strongly correlated with disability post-partum as assessed using the EDSS (r = 0.52; p = 0.009). Discussion Pregnancy in MS is associated with robust immunological alterations. Eomes+ Th cells are capable of inducing immune cell alterations during the course of pregnancy, most evident during the second and third trimester as shown with a correlation of reduced Treg cells and a significant increase of B-cells. Importantly, Eomes+ Th cells correlate with disability post-partum. In summary, during late pregnancy in MS an inflammatory, cytotoxic and dysregulated immunological environment is primed gaining function post-delivery. This may be responsible for post-partum disability accumulation.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, Bochum 44791, Germany
| | - Marielena Bongert
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Paulina Trendelenburg
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Sandra Thiel
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kerstin Hellwig
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
8
|
Bar-Or A, Aburashed R, Chinea AR, Hendin BA, Lucassen E, Meng X, Stankiewicz J, Tullman MJ, Cross AH. Humoral immune response to COVID-19 mRNA vaccines in patients with relapsing multiple sclerosis treated with ofatumumab. Mult Scler Relat Disord 2023; 79:104967. [PMID: 37769429 DOI: 10.1016/j.msard.2023.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND There are limited data available regarding the impact of ofatumumab, an anti-CD20 B-cell-depleting monoclonal antibody for relapsing multiple sclerosis (RMS), on vaccination response. The study objective was to assess humoral immune response (HIR) to non-live coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccination in patients with RMS treated with ofatumumab. METHODS This was an open-label, single-arm, multicenter, prospective pilot study of patients with RMS aged 18-55 years who received 2 or 3 doses of a COVID-19 mRNA vaccine after ≥1 month of subcutaneous ofatumumab (20 mg/month) treatment. The primary endpoint was the proportion of patients achieving HIR, as defined by local laboratory severe acute respiratory syndrome coronavirus-2 qualitative immunoglobulin G assays. Assay No. 1 was ≥14 days after the second or third vaccine dose. Assay No. 2 was 90 days thereafter. RESULTS Of the 26 patients enrolled (median [range] age: 42 [27-54] years; median [range] ofatumumab treatment duration: 237 [50-364] days), HIR was achieved by 53.9% (14/26; 95% CI: 33.4 - 73.4%) at Assay No. 1 and 50.0% (13/26; 95% CI: 29.9 - 70.1%) at Assay No. 2. Patients who received 3 vaccine doses had higher HIR rates (Assay No. 1: 70.0% [7/10]; Assay No. 2: 77.8% [7/9]) than those who received 2 doses (Assay No. 1: 46.7% [7/15]; Assay No. 2: 42.9% [6/14]). Of patients aged <40 years without previous anti-CD20 therapy, HIR was achieved by 90.0% (9/10) at Assay No. 1 and 75.0% (6/8) at Assay No. 2. No serious adverse events were reported. CONCLUSION Patients with RMS treated with ofatumumab can mount HIRs following COVID-19 vaccination. A plain language summary, infographic and a short video summarizing the key results are provided in supplementary material. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT04847596 (https://clinicaltrials.gov/ct2/show/NCT04847596).
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology, and Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Rany Aburashed
- Insight Chicago Hospital and Medical Center, Chicago, IL, United States
| | | | - Barry A Hendin
- Center for Neurology and Spine, Phoenix, AZ, United States
| | | | - Xiangyi Meng
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - James Stankiewicz
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | | | - Anne H Cross
- Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Klimas R, Karl AS, Poser PL, Sgodzai M, Theile-Ochel S, Gisevius B, Faissner S, Nastos I, Gold R, Motte J. [Over one year of B‑cell targeted therapy with Ofatumumab s.c.: first results of a prospective, patient-centered real-world observational study]. DER NERVENARZT 2023; 94:923-933. [PMID: 37042954 PMCID: PMC10576000 DOI: 10.1007/s00115-023-01470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/13/2023]
Abstract
INTRODUCTION Ofatumumab (Kesimpta™) is a s.c. applicable anti-CD20 antibody, which has been used in Germany since 2021 for the treatment of relapsing multiple sclerosis (RMS). The self-application offers a high degree of independence from intravenous forms of application with highly effective immunotherapy. In this study we recorded the patient-centered experience in 99 out of 127 patients who were adjusted to the drug by us. The aim was to investigate the tolerability and acceptance from the patient's perspective. METHODS Data collection was carried out using doctor documentation, questionnaires and telephone interviews. RESULTS The cohort consists of 127 patients. The patients received 2.8 (± SD 1.7) pre-therapies. The mean duration of therapy with Ofatumumab was 9.8 months (± SD 3.5). Structured data were collected from 99 patients. 23% of patients had no side effects during initial application. 19% rated the side effects as "very mild" and 18% as "mild". In addition to chills/fever (48%), headache (46%), limb pain (45%) and "other symptoms" (19%) also occurred. For subsequent injections, 72% of patients reported no side effects. 87% of patients found handling the medication "very easy". There was one relapse event during therapy. CONCLUSION Our study shows that Ofatumumab is well accepted and tolerated by patients. There was one relapse event during the observation period. The side effects are mild and occur during initial application. No increased tendency to infection could be observed. The data suggest that Ofatumumab is also an effective and safe treatment option for patients with relapsing remitting multiple sclerosis in real-world use.
Collapse
Affiliation(s)
- Rafael Klimas
- Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland.
| | - Anna-Sophia Karl
- Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland
| | - Philip Lennart Poser
- Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland
| | - Melissa Sgodzai
- Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland
| | - Simon Theile-Ochel
- Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland
| | - Barbara Gisevius
- Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland
| | - Simon Faissner
- Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland
| | - Ilias Nastos
- Facharztpraxis für Neurologie, Bochum, Deutschland
| | - Ralf Gold
- Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland
| | - Jeremias Motte
- Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland
| |
Collapse
|
10
|
Alfonso-Dunn R, Lin J, Lei J, Liu J, Roche M, De Oliveira A, Raisingani A, Kumar A, Kirschner V, Feuer G, Malin M, Sadiq SA. Humoral and cellular responses to repeated COVID-19 exposure in multiple sclerosis patients receiving B-cell depleting therapies: a single-center, one-year, prospective study. Front Immunol 2023; 14:1194671. [PMID: 37449202 PMCID: PMC10338057 DOI: 10.3389/fimmu.2023.1194671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis patients treated with anti-CD20 therapy (aCD20-MS) are considered especially vulnerable to complications from SARS-CoV-2 infection due to severe B-cell depletion with limited viral antigen-specific immunoglobulin production. Therefore, multiple vaccine doses as part of the primary vaccination series and booster updates have been recommended for this group of immunocompromised individuals. Even though much less studied than antibody-mediated humoral responses, T-cell responses play an important role against CoV-2 infection and are induced efficiently in vaccinated aCD20-MS patients. For individuals with such decoupled adaptive immunity, an understanding of the contribution of T-cell mediated immunity is essential to better assess protection against CoV-2 infection. Here, we present results from a prospective, single-center study for the assessment of humoral and cellular immune responses induced in aCD20-MS patients (203 donors/350 samples) compared to a healthy control group (43/146) after initial exposure to CoV-2 spike antigen and subsequent re-challenges. Low rates of seroconversion and RBD-hACE2 blocking activity were observed in aCD20-MS patients, even after multiple exposures (responders after 1st exposure = 17.5%; 2nd exposure = 29.3%). Regarding cellular immunity, an increase in the number of spike-specific monofunctional IFNγ+-, IL-2+-, and polyfunctional IFNγ+/IL-2+-secreting T-cells after 2nd exposure was found most noticeably in healthy controls. Nevertheless, a persistently higher T-cell response was detected in aCD20-MS patients compared to control individuals before and after re-exposure (mean fold increase in spike-specific IFNγ+-, IL-2+-, and IFNγ+/IL-2+-T cells before re-exposure = 3.9X, 3.6X, 3.5X/P< 0.001; after = 3.2X, 1.4X, 2.2X/P = 0.002, P = 0.05, P = 0.004). Moreover, cellular responses against sublineage BA.2 of the currently circulating omicron variant were maintained, to a similar degree, in both groups (15-30% T-cell response drop compared to ancestral). Overall, these results highlight the potential for a severely impaired humoral response in aCD20-MS patients even after multiple exposures, while still generating a strong T-cell response. Evaluating both humoral and cellular responses in vaccinated or infected MS patients on B-cell depletion therapy is essential to better assess individual correlations of immune protection and has implications for the design of future vaccines and healthcare strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, United States
| |
Collapse
|
11
|
Ziemssen T, Schlegel E, Groth M, Ettle B, Bopp T. Results on SARS-CoV-2 mRNA Vaccine Booster from an Open-Label Multicenter Study in Ofatumumab-Treated Participants with Relapsing Multiple Sclerosis. Vaccines (Basel) 2023; 11:vaccines11050978. [PMID: 37243082 DOI: 10.3390/vaccines11050978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Few data exist on how ofatumumab treatment impacts SARS-CoV-2 booster vaccination response. METHODS KYRIOS is an ongoing prospective open-label multicenter study on the response to initial and booster SARS-CoV-2 mRNA vaccination before or during ofatumumab treatment in relapsing MS patients. The results on the initial vaccination cohort have been published previously. Here, we describe 23 patients who received their initial vaccination outside of the study but booster vaccination during the study. Additionally, we report the booster results of two patients in the initial vaccination cohort. The primary endpoint was SARS-CoV-2-specific T-cell response at month 1. Furthermore, serum total and neutralizing antibodies were measured. RESULTS The primary endpoint was reached by 87.5% of patients with booster before (booster cohort 1, N = 8) and 46.7% of patients with booster during ofatumumab treatment (booster cohort 2, N = 15). Seroconversion rates for neutralizing antibodies increased from 87.5% at baseline to 100.0% at month 1 in booster cohort 1 and from 71.4% to 93.3% in booster cohort 2. Of note, 3 of 4 initially seronegative patients in booster cohort 2 and one seronegative patient in the initial vaccination cohort seroconverted after the booster during ofatumumab treatment. CONCLUSIONS Booster vaccinations increase neutralizing antibody titers in ofatumumab-treated patients. A booster is recommended in ofatumumab-treated patients.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Department of Neurology, Center of Clinical Neuroscience, Carl Gustav Carus University Clinic, University Hospital of Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Eugen Schlegel
- Zentrum für Neurologische Studien, 57076 Siegen, Germany
| | - Marie Groth
- Novartis Pharma GmbH, 90429 Nuremberg, Germany
| | | | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
12
|
Stoll S, Desai S, Levit E. A retrospective evaluation of seroconversion after COVID-19 during the early Omicron wave in fully vaccinated multiple sclerosis patients receiving anti-CD20 therapies. Mult Scler Relat Disord 2023; 71:104574. [PMID: 36827874 PMCID: PMC9928678 DOI: 10.1016/j.msard.2023.104574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) are commonly treated with anti-CD20 therapies. Reduced seroconversion following COVID-19 vaccination in patients receiving certain anti-CD20 therapies has been reported; however, the immune response following natural infection is poorly characterised. This study aimed to retrospectively evaluate COVID-19 antibody responses after vaccination and natural infection in patients treated with anti-CD20 therapies. METHODS We performed a retrospective review evaluating COVID-19 seroconversion and anti-spike glycoprotein antibody titres in double-vaccinated patients with MS, or related neuroinflammatory conditions, treated with anti-CD20 therapies (N = 30) with a confirmed history of natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (n = 14) or without infection (control; n = 16). This single-centre study was performed at the Yale Multiple Sclerosis Center, where patients treated with anti-CD20 therapies (ocrelizumab, n = 21; rituximab, n = 5; ofatumumab, n = 4) were systematically checked for SARS-CoV-2 anti-spike antibody levels throughout the pandemic. Data were collected from March 2020 to March 2022. All patients had received at least two doses of a Food and Drug Administration (FDA)-approved COVID-19 vaccine. Qualitative anti-spike antibody seropositivity was determined based on test-specific laboratory reference ranges. For a subset of patients (n = 18), quantitative anti-spike antibody levels were assessed via DiaSorin LIAISON® chemiluminescence immunoassay (positive titre was defined as ≥ 13). Vaccination and infection dates were also recorded, and patients were monitored for adverse COVID-19-related health effects. RESULTS Overall, 15/30 (50.0%) patients seroconverted following double vaccination. After infection, 13/14 (92.9%) seroconverted, while 6/16 (37.5%) uninfected patients seroconverted after vaccination. For the 18 patients with quantitative anti-spike antibody titres, mean titre post-vaccination was 37.4. Mean antibody titres were significantly higher after infection: 540.3 versus 20.1 in the control group (p < 0.05). Of the 14 infected patients, 13 had mild COVID-19 symptoms and one was asymptomatic. No hospitalisations or deaths were reported. CONCLUSIONS This study reports that SARS-CoV-2 anti-spike antibody titres in double-vaccinated MS patients treated with anti-CD20 therapies were significantly increased post-infection compared with the control group. Patients treated with anti-CD20 therapy who had confirmed infections displayed mild or asymptomatic infection. These results provide reassurance that anti-CD20 therapies in double-vaccinated patients do not preclude an appropriate SARS-CoV-2 antibody response post-infection.
Collapse
Affiliation(s)
- Sharon Stoll
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Shree Desai
- Yale University and Yale New Haven Hospital, New Haven, CT, USA
| | - Elle Levit
- Yale University and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
13
|
D’Amico E, Zanghì A, Fantozzi R, Centonze D, Avolio C. Ofatumumab and Early Immunological Cells Subset Characterization in Naïve Relapsing Multiple Sclerosis Patients: A Real-World Study. Curr Neuropharmacol 2023; 21:2563-2566. [PMID: 37534789 PMCID: PMC10614110 DOI: 10.2174/1570159x21666230803161825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Ofatumumab (OFA) is a fully human anti-CD20 monoclonal antibody administered with a 20 mg subcutaneous monthly dosing regimen. METHODS Inclusion criteria were patients: 1) aged 18-55; 2) with a confirmed diagnosis of relapsing Multiple Sclerosis (RMS), per the revised 2010 McDonald criteria; 2) who started OFA according to Italian Medicines Agency prescription rules and within 12 months from the RMS diagnosis; 3) naïve to any disease-modifying therapy. The primary outcome was to offer an overview of cellular subsets of RMS naïve patients (time 0) and then after 4 weeks (time 1) and 12 weeks (time 2) on therapy with OFA in a real-world setting. RESULTS Fifteen patients were enrolled. CD3+ T cell frequencies were higher at time 1 (%80.4, SD 7.7) and time 2 (%82.6, SD 5.8) when compared to time 0 (%72.4, SD 9.8), p = .013. B naïve cells were barely detectable in the OFA group at time 1 (%0.4, SD 0.5) and 2 (%1.4, SD 2.9) when compared to time 0 (%11.5, SD 3.8), p < .001. CONCLUSION The progressive and increasing use of anti-CD20 drugs imposes the need for larger, prospective, real-world, long-term studies to characterize further immunophenotypes of patients with RMS treated with OFA.
Collapse
Affiliation(s)
- Emanuele D’Amico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Aurora Zanghì
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | | | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
14
|
Zhang W, Liu S, Miao L, Fu A, Bao J, Zheng L, Li E, Yu J, Wang Y. Dynamics of CD4 + T-Cells and Neutralizing Antibody Responses to Three Consecutive Doses of Inactivated COVID-19 Vaccines in PLWH. Infect Drug Resist 2023; 16:2695-2707. [PMID: 37168513 PMCID: PMC10166092 DOI: 10.2147/idr.s409147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Background Comprehensive characterization of safety and immune responses to vaccines is crucial for the prevention and treatment of COVID-19 among people living with HIV (PLWH). This study aimed to investigate the dynamic changes in SARS-CoV-2-specific CD4+ T-cell subsets and neutralizing antibody after three consecutive doses of inactivated COVID-19 vaccines (BBIBP-CorV) among PLWH. Methods The blood samples were collected from 165 PLWH, including 66 PLWH in the 3-month interval between the second and third dose (cohort 1) and 99 PLWH in the 5-month interval (cohort 2). Blood collection for immunogenicity analysis was performed at 1-month post-2nd vaccination, pre-3rd vaccination, and within 2-month post-3rd vaccination. Wilcoxon matched-pairs signed-rank test was applied to compare the SARS-CoV-2-specific CD4+ T cell subsets and neutralizing antibody level at different time points. The relationship among CD4+ T-cells, Tregs subpopulations and SARS-CoV-2-specific neutralizing antibody level were evaluated with Spearman non-parametric correlation test. Results No serious adverse reactions were found among PLWH. After two-dose or three-dose inactivated COVID-19 vaccination, the absolute counts of CD4+ T-cells and Tregs subpopulations (CD4+CD25HighCD127Low Tregs, CD45RA+ rTregs and CD45RO+ eTregs) increased in two cohorts. Satisfactory SARS-CoV-2-specific neutralizing antibody responses to the third-dose vaccination were found in two cohorts, including significantly enhanced neutralizing antibody level and high neutralizing antibody seroconversion rate. In addition, SARS-CoV-2-specific neutralizing antibody level were positively associated with the absolute counts of CD4+ T-cells and Tregs subpopulations as well as the frequency of CD45RO+ eTregs in PLWH after three doses of vaccinations. Conclusion The three doses of inactivated COVID-19 vaccination were both safe and effective to increase SARS-CoV-2-specific CD4+ T-cells and neutralizing antibody in two PLWH cohorts with different inoculation intervals.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shourong Liu
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Liangbin Miao
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ai Fu
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jianfeng Bao
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Liping Zheng
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Er Li
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jianhua Yu
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Correspondence: Jianhua Yu, Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China, Email
| | - Yi Wang
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Yi Wang, Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China, Email
| |
Collapse
|
15
|
Faissner S, Heitmann N, Rohling R, Ceylan U, Bongert M, Plaza-Sirvent C, Marheinecke C, Pedreiturria X, Ayzenberg I, Hellwig K, Schmitz I, Pfaender S, Gold R. Preserved T-cell response in anti-CD20-treated multiple sclerosis patients following SARS-CoV-2 vaccination. Ther Adv Neurol Disord 2022; 15:17562864221141505. [PMCID: PMC9742512 DOI: 10.1177/17562864221141505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tremendous implications for the management of patients with autoimmune conditions such as multiple sclerosis (MS) under immune therapies targeting CD20+ B cells (aCD20). Objectives: Here, we investigated humoral and cellular immune responses, including anti-spike titers, neutralization against SARS-CoV-2 wild-type (WT), delta, and omicron variant and T cell responses of aCD20-treated relapsing–remitting MS patients following SARS-CoV-2 vaccination compared with healthy controls. Methods: Blood samples were collected within 4–8 weeks following the second vaccination against SARS-CoV-2. Sera were analyzed for anti-SARS-CoV-2 spike antibodies and neutralization capacity against pseudovirus for wild-type (WT), delta, and omicron variant. Peripheral blood mononuclear cells (PBMCs) were stimulated with a SARS-CoV-2 peptide pool and analyzed via flow cytometry. Results: The aCD20-treated MS patients had lower anti-SARS-CoV-2-spike titers, which correlated with B cell repopulation. Sera of aCD20-treated patients had reduced capacity to neutralize WT, delta, and omicron pseudoviruses in vitro. On the contrary, PBMCs of aCD20-treated patients elicited higher frequencies of CD3+ T cells and CD4+ T cells and comparable response of cytotoxic T cells, while Th1 response was reduced following restimulation with SARS-CoV-2. Conclusion: In summary, aCD20-treated patients have a reduced humoral immune response, depending on B cell repopulation, in accordance with preserved cellular immune response, suggesting partial cellular protection against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Neele Heitmann
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Ricarda Rohling
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Ulas Ceylan
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | | | | | - Corinna Marheinecke
- Department of Molecular & Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | | | - Ilya Ayzenberg
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Kerstin Hellwig
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular & Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|