1
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Wu Z, Li W, Wang S, Zheng Z. Role of deubiquitinase USP47 in cardiac function alleviation and anti-inflammatory immunity after myocardial infarction by regulating NLRP3 inflammasome-mediated pyroptotic signal pathways. Int Immunopharmacol 2024; 136:112346. [PMID: 38850785 DOI: 10.1016/j.intimp.2024.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Myocardial infarction (MI) is an event of heart attack due to the formation of plaques in the interior walls of the arteries. This study is conducted to explore the role of ubiquitin-specific peptidase 47 (USP47) in cardiac function and inflammatory immunity. MI mouse models were established, followed by an appraisal of cardiac functions, infarct size, pathological changes, and USP47 and NLRP3 levels. MI cell models were established in HL-1 cells using anoxia. Levels of cardiac function-associated proteins, USP7, interferon regulatory factor 1 (IRF1), platelet factor-4 (CXCL4), pyroptotic factors, and neutrophil extracellular traps (NETs) were determined. The bindings of IRF1 to USP47 and the CXCL4 promoter and the ubiquitination of IRF1 were analyzed. USP47 was upregulated in myocardial tissues of MI mice. USP47 inhibition alleviated cardiac functions, and decreased infarct size, pro-inflammatory cytokines, NETs, NLRP3, and pyroptosis. The ubiquitination and expression levels of IRF1 were increased by silencing USP47, and IRF1 bound to the CXCL4 promoter to promote CXCL4. Overexpression of IRF1 or CXCL4 in vitro and injection of Nigericin in vivo reversed the effect of silencing USP47 on alleviating pyroptosis and cardiac functions. Collectively, USP47 stabilized IRF1 and promoted CXCL4, further promoting pyroptosis, impairing cardiac functions, and aggravating immune inflammation through NLRP3 pathways.
Collapse
Affiliation(s)
- Zheng Wu
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Wenzheng Li
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shaoping Wang
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ze Zheng
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Liu Y, Yang Y, Zhao C, Liu M, Xu D, Wu H, Lei J, Deng Y, Xie W, Huang J, Wu S, Zhang Y, Zhang H, He Y, Peng Z, Wang Y, Shen H, Wang Q, Zhang Y, Yan D, Wang L, Ma X. An immune window of opportunity to prevent spontaneous abortion: prepregnancy peripheral leukocytes and subsets were associated with a decreased risk of spontaneous abortion. Hum Reprod 2024; 39:326-334. [PMID: 38166353 DOI: 10.1093/humrep/dead261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
STUDY QUESTION Do prepregnancy peripheral leukocytes (PPLs) and their subsets influence the risk of spontaneous abortion (SAB)? SUMMARY ANSWER PPLs and their subsets are associated with the risk of SAB. WHAT IS KNOWN ALREADY Compelling studies have revealed the crucial role of maternal peripheral leukocytes in embryo implantation and pregnancy maintenance. Adaptive changes are made by PPLs and their subsets after conception. STUDY DESIGN, SIZE, DURATION This population-based retrospective cohort study was based on data from the National Free Pre-pregnancy Check-up Project (NFPCP) in mainland China. Couples preparing for pregnancy within the next six months were provided with free prepregnancy health examinations and counseling services for reproductive health. The current study was based on 1 310 494 female NFPCP participants aged 20-49 who became pregnant in 2016. After sequentially excluding 235 456 participants lost to follow-up, with multiple births, and who failed to complete blood tests, a total of 1 075 038 participants were included in the primary analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS PPLs and their subset counts and ratios were measured. The main outcome was SAB. A multivariable logistic regression model was used to estimate the odds ratio (OR) and 95% CI of SAB associated with PPLs and their subsets, and restricted cubic spline (RCS) was used to estimate the nonlinear exposure-response relationship. MAIN RESULTS AND ROLE OF CHANCE Of the included pregnant participants, a total of 35 529 SAB events (3.30%) were recorded. Compared to participants with reference values of PPLs, the ORs (95% CIs) of leukopenia and leukocytosis for SAB were 1.14 (1.09-1.20) and 0.74 (0.69-0.79), respectively. The RCS result revealed a monotonous decreasing trend (Pnonlinear < 0.05). Similar relationships were observed for the neutrophil count and ratio, monocyte count, and middle-sized cell count and ratio. The lymphocyte ratio showed a positive and nonlinear relationship with the risk of SAB (Pnonlinear < 0.05). Both eosinophils and basophils showed positive relationships with the risk of SAB (eosinophil Pnonlinear > 0.05 and basophil Pnonlinear < 0.05). LIMITATIONS, REASONS FOR CAUTION Chemical abortion events and the cause of SAB were not collected at follow-up. Whether women with abnormal PPLs had recovered during periconception was not determined. WIDER IMPLICATIONS OF THE FINDINGS PPLs and their subsets are associated with the risk of SAB. Leukopenia and neutropenia screening in women preparing for pregnancy and developing a feasible PPL stimulation approach should be emphasized to utilize the immune window of opportunity to prevent SAB. STUDY FUNDING/COMPETING INTEREST(S) This study was approved by the Institutional Research Review Board of the National Health and Family Planning Commission. This study was supported by the National Key Research and Development Program of China (grants 2021YFC2700705 [Y.Y.] and 2016YFC100307 [X.M.]) and the National Natural Science Foundation of China (grant no. 82003472 [L.W.]). The funding source was not involved in the study design, data collection, analysis and interpretation of the data, writing the report, or the decision to submit this article for publication. No competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Youhong Liu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ying Yang
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Centre, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Chuanyu Zhao
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Centre, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Meiya Liu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Die Xu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Hanbin Wu
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Centre, Beijing, China
| | - Jueming Lei
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Centre, Beijing, China
| | - Yuzhi Deng
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Centre, Beijing, China
| | - Wenlu Xie
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jiaxin Huang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Siyu Wu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ya Zhang
- National Research Institute for Family Planning, Beijing, China
| | - Hongguang Zhang
- National Research Institute for Family Planning, Beijing, China
| | - Yuan He
- National Research Institute for Family Planning, Beijing, China
| | - Zuoqi Peng
- National Research Institute for Family Planning, Beijing, China
| | - Yuanyuan Wang
- National Research Institute for Family Planning, Beijing, China
| | - Haiping Shen
- Department of Maternal and Child Health, National Health Commission of the PRC, Beijing, China
| | - Qiaomei Wang
- Department of Maternal and Child Health, National Health Commission of the PRC, Beijing, China
| | - Yiping Zhang
- Department of Maternal and Child Health, National Health Commission of the PRC, Beijing, China
| | - Donghai Yan
- Department of Maternal and Child Health, National Health Commission of the PRC, Beijing, China
| | - Long Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Centre, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|