1
|
Jin YY, Guo Y, Xiong SW, Zhang N, Chen JH, Liu F. BALF editome profiling reveals A-to-I RNA editing associated with severity and complications of Mycoplasma pneumoniae pneumonia in children. mSphere 2025; 10:e0101224. [PMID: 39998235 PMCID: PMC11934315 DOI: 10.1128/msphere.01012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/26/2025] Open
Abstract
Mycoplasma pneumoniae is an important human respiratory pathogen that causes mild-to-moderate community-acquired M. pneumoniae pneumonia (MPP), particularly in children. RNA editing plays a vital role in pathogen infection and host immune response, but it remains largely unknown how it could be involved in the epigenetic regulation of host response to M. pneumoniae infection. In the present study, we performed an epitranscriptomic analysis of adenosine to inosine (A-to-I) editing in 39 bronchoalveolar lavage fluid (BALF) samples from the severe side (SS) and the opposite side (OS) of patients with MPP. Our editome profiling identified 87 differential RNA editing (DRE) events in 50 genes, especially missense editing events that recoded C-C motif chemokine receptor-like 2 (CCRL2, p.K147R) and cyclin I (CCNI, p.R75G). The expression of adenosine deaminase acting on RNA (ADAR) significantly increased on SS compared to OS and positively correlated with the average RNA editing level and individual DRE events. Meanwhile, functional enrichment analysis showed that DRE was observed in genes primarily associated with the negative regulation of innate immune response, type I interferon production, and cytokine production. Further comparison of SS between complicated MPP (CMPP) and non-complicated MPP (NCMPP) revealed RNA editing events associated with MPP complications, with a higher ADAR expression in CMPP than NCMPP. By identifying DRE events as biomarkers associated with MPP severity and complications, our editome profiling provides new insight into the potential role played by A-to-I RNA editing in modulating the host's immune system during M. pneumoniae infection.IMPORTANCEOur research investigates how Mycoplasma pneumoniae, a common respiratory pathogen, influences how our cells modify their genetic instructions. By studying RNA editing changes in bronchoalveolar lavage fluid from patients with M. pneumoniae pneumonia, we aim to investigate how M. pneumoniae infection alters epigenetics and contributes to the disease severity and complications. Understanding such epigenetic alterations not only sheds light on the mechanisms underlying M. pneumoniae infection but also holds potential implications for developing better diagnostic tools and therapies. Ultimately, this work may facilitate the design of more targeted treatments to alleviate the impact of respiratory infections caused by the pathogen. Our findings may also offer broader insights into how microbial infections reshape immune processes, highlighting the importance of RNA editing in host-pathogen interactions.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yun Guo
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, Jiangsu, China
| | - Su-Wan Xiong
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, Jiangsu, China
| | - Na Zhang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Liu
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Pan X, Bruch A, Blango MG. Past, Present, and Future of RNA Modifications in Infectious Disease Research. ACS Infect Dis 2024; 10:4017-4029. [PMID: 39569943 DOI: 10.1021/acsinfecdis.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In early 2024, the National Academies of Sciences, Engineering, and Medicine (NASEM) released a roadmap for the future of research into mapping ribonucleic acid (RNA) modifications, which underscored the importance of better defining these diverse chemical changes to the RNA macromolecule. As nearly all mature RNA molecules harbor some form of modification, we must understand RNA modifications to fully appreciate the functionality of RNA. The NASEM report calls for massive mobilization of resources and investment akin to the transformative Human Genome Project of the early 1990s. Like the Human Genome Project, a concerted effort in improving our ability to assess every single modification on every single RNA molecule in an organism will change the way we approach biological questions, accelerate technological advance, and improve our understanding of the molecular world. Consequently, we are also at the start of a revolution in defining the impact of RNA modifications in the context of host-microbe and even microbe-microbe interactions. In this perspective, we briefly introduce RNA modifications to the infection biologist, highlight key aspects of the NASEM report and exciting examples of RNA modifications contributing to host and pathogen biology, and finally postulate where infectious disease research may benefit from this exciting new endeavor in globally mapping RNA modifications.
Collapse
Affiliation(s)
- Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| |
Collapse
|
3
|
Jin YY, Liang YP, Pan JQ, Huang WH, Feng YM, Sui WJ, Yu H, Tang XD, Zhu L, Chen JH. RNA editing in response to COVID-19 vaccines: unveiling dynamic epigenetic regulation of host immunity. Front Immunol 2024; 15:1413704. [PMID: 39308856 PMCID: PMC11413487 DOI: 10.3389/fimmu.2024.1413704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Background COVID-19 vaccines are crucial for reducing the threat and burden of the pandemic on global public health, yet the epigenetic, especially RNA editing in response to the vaccines remains unelucidated. Results Our current study performed an epitranscriptomic analysis of RNA-Seq data of 260 blood samples from 102 healthy and SARS-CoV-2 naïve individuals receiving different doses of the COVID-19 vaccine and revealed dynamic, transcriptome-wide adenosine to inosine (A-to-I) RNA editing changes in response to COVID-19 vaccines (RNA editing in response to COVID-19 vaccines). 5592 differential RNA editing (DRE) sites in 1820 genes were identified, with most of them showing up-regulated RNA editing and correlated with increased expression of edited genes. These deferentially edited genes were primarily involved in immune- and virus-related gene functions and pathways. Differential ADAR expression probably contributed to RNA editing in response to COVID-19 vaccines. One of the most significant DRE in RNA editing in response to COVID-19 vaccines was in apolipoprotein L6 (APOL6) 3' UTR, which positively correlated with its up-regulated expression. In addition, recoded key antiviral and immune-related proteins such as IFI30 and GBP1 recoded by missense editing was observed as an essential component of RNA editing in response to COVID-19 vaccines. Furthermore, both RNA editing in response to COVID-19 vaccines and its functions dynamically depended on the number of vaccine doses. Conclusion Our results thus underscored the potential impact of blood RNA editing in response to COVID-19 vaccines on the host's molecular immune system.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Jia-Qi Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Wen-Hao Huang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan-Meng Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei-Jia Sui
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Han Yu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dan Tang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Lin Zhu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Chattopadhyay P, Mehta P, Kanika, Mishra P, Chen Liu CS, Tarai B, Budhiraja S, Pandey R. RNA editing in host lncRNAs as potential modulator in SARS-CoV-2 variants-host immune response dynamics. iScience 2024; 27:109846. [PMID: 38770134 PMCID: PMC11103575 DOI: 10.1016/j.isci.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Both host and viral RNA editing plays a crucial role in host's response to infection, yet our understanding of host RNA editing remains limited. In this study of in-house generated RNA sequencing (RNA-seq) data of 211 hospitalized COVID-19 patients with PreVOC, Delta, and Omicron variants, we observed a significant differential editing frequency and patterns in long non-coding RNAs (lncRNAs), with Delta group displaying lower RNA editing compared to PreVOC/Omicron patients. Notably, multiple transcripts of UGDH-AS1 and NEAT1 exhibited high editing frequencies. Expression of ADAR1/APOBEC3A/APOBEC3G and differential abundance of repeats were possible modulators of differential editing across patient groups. We observed a shift in crucial infection-related pathways wherein the pathways were downregulated in Delta compared to PreVOC and Omicron. Our genomics-based evidence suggests that lncRNA editing influences stability, miRNA binding, and expression of both lncRNA and target genes. Overall, the study highlights the role of lncRNAs and how editing within host lncRNAs modulates the disease severity.
Collapse
Affiliation(s)
- Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanika
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Jin YY, Liang YP, Huang WH, Guo L, Cheng LL, Ran TT, Yao JP, Zhu L, Chen JH. Ocular A-to-I RNA editing signatures associated with SARS-CoV-2 infection. BMC Genomics 2024; 25:431. [PMID: 38693480 PMCID: PMC11061923 DOI: 10.1186/s12864-024-10324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Wen-Hao Huang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Liang Guo
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Li-Li Cheng
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Tian-Tian Ran
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Jin-Ping Yao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Lin Zhu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China.
| |
Collapse
|
6
|
Zhang D, Zhu L, Gao Y, Wang Y, Li P. RNA editing enzymes: structure, biological functions and applications. Cell Biosci 2024; 14:34. [PMID: 38493171 PMCID: PMC10944622 DOI: 10.1186/s13578-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
With the advancement of sequencing technologies and bioinformatics, over than 170 different RNA modifications have been identified. However, only a few of these modifications can lead to base pair changes, which are called RNA editing. RNA editing is a ubiquitous modification in mammalian transcriptomes and is an important co/posttranscriptional modification that plays a crucial role in various cellular processes. There are two main types of RNA editing events: adenosine to inosine (A-to-I) editing, catalyzed by ADARs on double-stranded RNA or ADATs on tRNA, and cytosine to uridine (C-to-U) editing catalyzed by APOBECs. This article provides an overview of the structure, function, and applications of RNA editing enzymes. We discuss the structural characteristics of three RNA editing enzyme families and their catalytic mechanisms in RNA editing. We also explain the biological role of RNA editing, particularly in innate immunity, cancer biogenesis, and antiviral activity. Additionally, this article describes RNA editing tools for manipulating RNA to correct disease-causing mutations, as well as the potential applications of RNA editing enzymes in the field of biotechnology and therapy.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|