1
|
Hetta HF, Elsaghir A, Sijercic VC, Ahmed AK, Gad SA, Zeleke MS, Alanazi FE, Ramadan YN. Clinical Progress in Mesenchymal Stem Cell Therapy: A Focus on Rheumatic Diseases. Immun Inflamm Dis 2025; 13:e70189. [PMID: 40353645 PMCID: PMC12067559 DOI: 10.1002/iid3.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/10/2024] [Accepted: 03/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Rheumatic diseases are chronic immune-mediated disorders affecting multiple organ systems and significantly impairing patients' quality of life. Current treatments primarily provide symptomatic relief without offering a cure. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their ability to differentiate into various cell types and their immunomodulatory, anti-inflammatory, and regenerative properties. This review aims to summarize the clinical progress of MSC therapy in rheumatic diseases, highlight key findings from preclinical and clinical studies, and discuss challenges and future directions. METHODOLOGY A comprehensive review of preclinical and clinical studies on MSC therapy in rheumatic diseases, including systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, osteoporosis, Sjögren's syndrome, Crohn's disease, fibromyalgia, systemic sclerosis, dermatomyositis, and polymyositis, was conducted. Emerging strategies to enhance MSC efficacy and overcome current limitations were also analyzed. RESULTS AND DISCUSSION Evidence from preclinical and clinical studies suggests that MSC therapy can reduce inflammation, modulate immune responses, and promote tissue repair in various rheumatic diseases. Clinical trials have demonstrated potential benefits, including symptom relief and disease progression delay. However, challenges such as variability in treatment response, optimal cell source and dosing, long-term safety concerns, and regulatory hurdles remain significant barriers to clinical translation. Standardized protocols and further research are required to optimize MSC application. CONCLUSION MSC therapy holds promise for managing rheumatic diseases, offering potential disease-modifying effects beyond conventional treatments. However, large-scale, well-controlled clinical trials are essential to establish efficacy, safety, and long-term therapeutic potential. Addressing current limitations through optimized treatment protocols and regulatory frameworks will be key to its successful integration into clinical practice.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
| | - Alaa Elsaghir
- Department of Microbiology and Immunology, Faculty of PharmacyAssiut UniversityAssiutEgypt
| | | | - Abdulrahman K. Ahmed
- Emergency Medicine Unit, Department of Anaethesia and Intensive Care, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Sayed A. Gad
- Emergency Medicine Unit, Department of Anaethesia and Intensive Care, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Mahlet S. Zeleke
- Menelik II Medical and Health Science CollegeAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of PharmacyAssiut UniversityAssiutEgypt
| |
Collapse
|
2
|
Duruöz MT, Öz N, Karabulut Y, Erdem Gürsoy D, Gezer HH, Acer Kasman S. Validity and psychometric characteristics of the Duruöz Hand Index (DHI) with systemic sclerosis. Rheumatol Int 2025; 45:75. [PMID: 40088281 PMCID: PMC11910436 DOI: 10.1007/s00296-025-05829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE The Duruöz Hand Index (DHI) is a self-report questionnaire originally developed to assess hand function in rheumatoid arthritis patients and validated for various rheumatic conditions. The aim of the study is to evaluate the validity and psychometric features of the DHI in patients with systemic sclerosis (SSc). METHODS SSc patients diagnosed using EULAR/ACR 2013 criteria were included in study. Hand functionality was assessed using the DHI, Hand Functional Index (HFI) and visual analog scales (VAS) for disability and handicap. Overall disability and quality of life were measured using the Health Assessment Questionnaire (HAQ) and Short Form-36 (SF-36). Reliability (Cronbach's alpha and ICC) and validity (face, content, convergent and divergent) were also analyzed and correlations with other measures assessed for construct validity of the DHI were examined. RESULTS Seventy-three patients were included in the study, 78.1% were female. The baseline mean DHI score was 31.2 (SD: 20.2). Completion and calculation of the questionnaire were easy and took 5 min and 30 s, respectively. The Cronbach's alpha coefficient for internal consistency was 0.973 and the ICC for test-retest reliability was 0.993 (95%CI 0.981-0.997), suggesting that the DHI has high internal consistency and a high degree of reliability. Cognitive debriefing showed that the DHI is clear, understandable, relevant, and covers many domains of daily life, indicating good face and content validity. The DHI demonstrated good to moderate correlations with functional measures indicating convergent validity and moderate to non-significant correlations with non-functional parameters that supported divergent validity. Cronbach's alpha was 0.973, indicating excellent internal consistency. CONCLUSION In SSc patients, specific tools for assessing hand function are lacking. The DHI is a practical, reliable and valid measurement tool for both clinical assessment and research in this disease affecting skin, tendons, subcutaneous tissue and arthritis.
Collapse
Affiliation(s)
- Mehmet Tuncay Duruöz
- Physical Medicine and Rehabilitation Department, Rheumatology Division, Marmara University School of Medicine, Istanbul, Türkiye
| | - Nuran Öz
- Physical Medicine and Rehabilitation Department, Rheumatology Division, Marmara University School of Medicine, Istanbul, Türkiye.
| | - Yusuf Karabulut
- Internal Medicine Department, Rheumatology Division, Yıldırım Doruk Hospital, Bursa, Türkiye
| | - Didem Erdem Gürsoy
- Physical Medicine and Rehabilitation Department, Rheumatology Division, Prof. Dr Cemil Taşcioğlu City Hospital, Istanbul, Türkiye
| | - Halise Hande Gezer
- Physical Medicine and Rehabilitation Department, Rheumatology Division, Marmara University School of Medicine, Istanbul, Türkiye
| | - Sevtap Acer Kasman
- Physical Medicine and Rehabilitation Department, Rheumatology Division, Marmara University School of Medicine, Istanbul, Türkiye
| |
Collapse
|
3
|
Zeng L, Liu C, Wu Y, Liu S, Zheng Y, Hao W, Wang D, Sun L. Efficacy and safety of mesenchymal stromal cell transplantation in the treatment of autoimmune and rheumatic immune diseases: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2025; 16:65. [PMID: 39934871 PMCID: PMC11817852 DOI: 10.1186/s13287-025-04184-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE This study aims to assess the effectiveness and safety of mesenchymal stem cell (MSC) transplantation in the treatment of autoimmune and rheumatic immune diseases through randomized controlled trials (RCTs). METHODS Two researchers conducted a comprehensive search of Chinese and English databases from their inception until Dec. 2023. The literature screening and data extraction were then performed. Statistical analysis was carried out using RevMan 5.4 software. RESULTS A total of 42 relevant RCTs, involving 2,183 participants, were ultimately included in this study. These RCTs encompassed four types of rheumatic immune and bone diseases, namely rheumatoid arthritis (RA), osteoarthritis (OA), spondyloarthritis, systemic sclerosis arthritis, systemic lupus erythematosus (SLE), inflammatory bowel disease, multiple sclerosis, primary Sjögren's syndrome (PSS). The systematic review indicates that MSC transplantation may improve spondyloarthritis, RA, PSS. The meta-analysis reveals that MSC transplantation significantly improved symptoms in patients with OA [VAS (visual analogue scale): bone marrow: SMD = - 0.95, 95% CI - 1.55 to - 0.36, P = 0.002; umbilical cord: SMD = - 1.25, 95% CI - 2.04 to - 0.46, P = 0.002; adipose tissue: SMD = -1.26, 95% CI -1.99 to - 0.52, P = 0.0009)], SLE [Systemic lupus erythematosus disease activity index (SLEDAI): SMD = - 2.32, 95% CI - 3.59 to - 1.06, P = 0.0003], inflammatory bowel disease [clinical efficacy: RR = 2.02, 95% CI 1.53 to 2.67, P < 0.00001]. However, MSC transplantation may not improve the symptoms of multiple sclerosis and systemic sclerosis (Ssc). Importantly, MSC transplantation did not increase the incidence of adverse events (OA: RR = 1.23, 95% CI 0.93 to 1.65, P = 0.15; SLE: RR = 0.83, 95% CI 0.28 to 2.51, P = 0.76; Inflammatory bowel disease: RR = 0.99, 95% CI 0.81 to 1.22, P = 0.96; Multiple sclerosis: RR = 1.12, 95% CI 0.81 to 1.53, P = 0.50), supporting its safety profile across the included studies. These findings suggest that MSC transplantation holds promise for several rheumatic and autoimmune diseases while highlighting areas where further research is warranted. CONCLUSION MSC transplantation may have the potential to treat autoimmune and rheumatic immune diseases. Moreover. MSC transplantation appears to be relatively safe and could be considered as a viable alternative treatment option for autoimmune and rheumatic immune diseases.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Chang Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yang Wu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuman Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yaru Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Chen L, Huang R, Huang C, Nong G, Mo Y, Ye L, Lin K, Chen A. Cell therapy for scleroderma: progress in mesenchymal stem cells and CAR-T treatment. Front Med (Lausanne) 2025; 11:1530887. [PMID: 39882532 PMCID: PMC11774712 DOI: 10.3389/fmed.2024.1530887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Cell therapy is an emerging strategy for precision treatment of scleroderma. This review systematically summarizes the research progress of mesenchymal stem cell (MSC) and chimeric antigen receptor T cell (CAR-T) therapies in scleroderma and discusses the challenges and future directions for development. MSCs possess multiple functions, including immunomodulation, anti-fibrosis, and promotion of vascular regeneration, all of which can improve multiple pathological processes associated with scleroderma. Studies have demonstrated that MSCs can alleviate skin fibrosis by inhibiting CCL2 production and reducing the recruitment of pathological macrophages; their paracrine effects can exert extensive regulatory functions. CAR-T cell therapy ca specifically target and eliminate autoreactive immune cells, exhibiting enhanced specificity and personalized potential. Different cell therapies may have complementary and synergistic effects in treating scleroderma, such as MSCs exerting their effects through paracrine mechanisms while CAR-T cells specifically eliminate pathological cells. Furthermore, cell-free therapies derived from MSCs, such as extracellular vesicles or exosomes, may help circumvent the limitations of MSC therapy. Although cell therapy has opened new avenues for the precision treatment of scleroderma, it still faces numerous challenges. In the future, it is essential to strengthen integration of basic and clinical research, establish standardized protocols for cell preparation and quality control, develop personalized treatment plans, and rationally combine cell therapy with existing treatment methods to maximize its advantages and improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Liting Chen
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Rongshan Huang
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Chaoshuo Huang
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Guiming Nong
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Yuanyuan Mo
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Lvyin Ye
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Kunhong Lin
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Anping Chen
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
- Minda Hospital of Hubei Minzu University, Enshi, China
| |
Collapse
|
5
|
Wang X, Guo J, Dai Q. Mesenchymal stem cell-derived extracellular vesicles in systemic sclerosis: role and therapeutic directions. Front Cell Dev Biol 2024; 12:1492821. [PMID: 39483335 PMCID: PMC11524835 DOI: 10.3389/fcell.2024.1492821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease with clinical symptoms of vascular damage, immune disorders, and fibrosis, presenting significant treatment challenges and limited therapeutic options. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been demonstrated in numerous studies as more effective than MSCs in treating autoimmune diseases. Recent studies demonstrate that MSC-EVs can significantly ameliorate the symptoms of SSc and mitigate pathological changes such as vascular injury, immune dysregulation, and fibrosis. These findings underscore the promising therapeutic potential of MSC-EVs in the treatment of SSc. MSC-EVs promote angiogenesis, modulate immune dysfunction, and combat fibrosis. This article summarizes the therapeutic applications and possible mechanisms of MSC-EVs for SSc, thereby offering a novel therapeutic direction for the treatment of SSc.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jiaying Guo
- Department of Geriatric Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangfu Dai
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
6
|
Wang F, Dai H, Zhou Z, Shan Y, Yu M, Sun J, Sheng L, Huang L, Meng X, You Y, Sheng M. Astragalus polysaccharides augment BMSC homing via SDF-1/CXCR4 modulation: a novel approach to counteract peritoneal mesenchymal transformation and fibrosis. BMC Complement Med Ther 2024; 24:204. [PMID: 38789949 PMCID: PMC11127382 DOI: 10.1186/s12906-024-04483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE This study aimed to evaluate the potential of astragalus polysaccharide (APS) pretreatment in enhancing the homing and anti-peritoneal fibrosis capabilities of bone marrow mesenchymal stromal cells (BMSCs) and to elucidate the underlying mechanisms. METHODS Forty male Sprague-Dawley rats were allocated into four groups: control, peritoneal dialysis fluid (PDF), PDF + BMSCs, and PDF + APSBMSCs (APS-pre-treated BMSCs). A peritoneal fibrosis model was induced using PDF. Dil-labeled BMSCs were administered intravenously. Post-transplantation, BMSC homing to the peritoneum and pathological alterations were assessed. Stromal cell-derived factor-1 (SDF-1) levels were quantified via enzyme-linked immunosorbent assay (ELISA), while CXCR4 expression in BMSCs was determined using PCR and immunofluorescence. Additionally, a co-culture system involving BMSCs and peritoneal mesothelial cells (PMCs) was established using a Transwell setup to examine the in vitro effects of APS on BMSC migration and therapeutic efficacy, with the CXCR4 inhibitor AMD3100 deployed to dissect the role of the SDF-1/CXCR4 axis and its downstream impacts. RESULTS In vivo and in vitro experiments confirmed that APS pre-treatment notably facilitated the targeted homing of BMSCs to the peritoneal tissue of PDF-treated rats, thereby amplifying their therapeutic impact. PDF exposure markedly increased SDF-1 levels in peritoneal and serum samples, which encouraged the migration of CXCR4-positive BMSCs. Inhibition of the SDF-1/CXCR4 axis through AMD3100 application diminished BMSC migration, consequently attenuating their therapeutic response to peritoneal mesenchyme-to-mesothelial transition (MMT). Furthermore, APS upregulated CXCR4 expression in BMSCs, intensified the activation of the SDF-1/CXCR4 axis's downstream pathways, and partially reversed the AMD3100-induced effects. CONCLUSION APS augments the SDF-1/CXCR4 axis's downstream pathway activation by increasing CXCR4 expression in BMSCs. This action bolsters the targeted homing of BMSCs to the peritoneal tissue and amplifies their suppressive influence on MMT, thereby improving peritoneal fibrosis.
Collapse
Affiliation(s)
- Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziren Zhou
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Meng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongqing You
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China.
| |
Collapse
|
7
|
Jiang Z, Yao X, Lan W, Tang F, Ma W, Yao X, Chen C, Cai X. Associations of the circulating levels of cytokines with risk of systemic sclerosis: a bidirectional Mendelian randomized study. Front Immunol 2024; 15:1330560. [PMID: 38482004 PMCID: PMC10933062 DOI: 10.3389/fimmu.2024.1330560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Objective Systemic sclerosis(SSc) remains unclear, studies suggest that inflammation may be linked to its pathogenesis. Hence, we conducted a bidirectional Mendelian randomization (MR) analysis to evaluate the association between cytokine and growth factor cycling levels and the risk of SSc onset. Methods In our study, the instrumental variables(IVs) for circulating cytokines were sourced from the genome-wide association study (GWAS) dataset of 8293 Finnish individuals. The SSc data comprised 302 cases and 213145 controls, and was included in the GWAS dataset. We employed four methods for the MR analysis: MR Egger, Inverse variance weighted (IVW), Weighted medium, and Weighted Mode, with IVW being the primary analytical method. Sensitivity analyses were performed using heterogeneity testing, horizontal pleiotropy testing, and the Leave One Out (LOO) method. We also conducted a reverse MR analysis to determine any reverse causal relationship between SSc and circulating cytokines. Results After Bonferroni correction, MR analysis revealed that the Interleukin-5 (IL-5) cycle level was associated with a reduced risk of SSc [odds ratio (OR)=0.48,95% confidence interval (CI): 0.27-0.84, P=0.01]. It also indicated that the Stem cell growth factor beta (SCGF-β) cycling level might elevate the risk of SSc (OR = 1.36, 95% CI: 1.01-1.83, P = 0.04). However, the reverse MR analysis did not establish a causal relationship between SSc and circulating cytokine levels. Additionally, sensitivity analysis outcomes affirm the reliability of our results. Conclusion Our MR study suggests potential causal relationships between IL-5, SCGF-β, and the risk of SSc. Further research is essential to determine how IL-5 and SCGF-β influence the development of SSc.
Collapse
Affiliation(s)
- Zong Jiang
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoling Yao
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weiya Lan
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fang Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wukai Ma
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xueming Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Changming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin Cai
- Department of Rheumatology and Immunology, The First People’s Hospital Of Guiyang, Guiyang, China
| |
Collapse
|
8
|
Martínez-Hernández SL, Muñoz-Ortega MH, Ávila-Blanco ME, Medina-Pizaño MY, Ventura-Juárez J. Novel Approaches in Chronic Renal Failure without Renal Replacement Therapy: A Review. Biomedicines 2023; 11:2828. [PMID: 37893201 PMCID: PMC10604533 DOI: 10.3390/biomedicines11102828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by renal parenchymal damage leading to a reduction in the glomerular filtration rate. The inflammatory response plays a pivotal role in the tissue damage contributing to renal failure. Current therapeutic options encompass dietary control, mineral salt regulation, and management of blood pressure, blood glucose, and fatty acid levels. However, they do not effectively halt the progression of renal damage. This review critically examines novel therapeutic avenues aimed at ameliorating inflammation, mitigating extracellular matrix accumulation, and fostering renal tissue regeneration in the context of CKD. Understanding the mechanisms sustaining a proinflammatory and profibrotic state may offer the potential for targeted pharmacological interventions. This, in turn, could pave the way for combination therapies capable of reversing renal damage in CKD. The non-replacement phase of CKD currently faces a dearth of efficacious therapeutic options. Future directions encompass exploring vaptans as diuretics to inhibit water absorption, investigating antifibrotic agents, antioxidants, and exploring regenerative treatment modalities, such as stem cell therapy and novel probiotics. Moreover, this review identifies pharmaceutical agents capable of mitigating renal parenchymal damage attributed to CKD, targeting molecular-level signaling pathways (TGF-β, Smad, and Nrf2) that predominate in the inflammatory processes of renal fibrogenic cells.
Collapse
Affiliation(s)
- Sandra Luz Martínez-Hernández
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Martín Humberto Muñoz-Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Mariana Yazmin Medina-Pizaño
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| |
Collapse
|
9
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|