1
|
Xie X, Liu W, Yuan Z, Chen H, Mao W. Bridging epigenomics and tumor immunometabolism: molecular mechanisms and therapeutic implications. Mol Cancer 2025; 24:71. [PMID: 40057791 PMCID: PMC11889836 DOI: 10.1186/s12943-025-02269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
Epigenomic modifications-such as DNA methylation, histone acetylation, and histone methylation-and their implications in tumorigenesis, progression, and treatment have emerged as a pivotal field in cancer research. Tumors undergo metabolic reprogramming to sustain proliferation and metastasis in nutrient-deficient conditions, while suppressing anti-tumor immunity in the tumor microenvironment (TME). Concurrently, immune cells within the immunosuppressive TME undergo metabolic adaptations, leading to alterations in their immune function. The complicated interplay between metabolites and epigenomic modulation has spotlighted the significance of epigenomic regulation in tumor immunometabolism. In this review, characteristics of the epigenomic modification associated with tumors are systematically summarized alongside with their regulatory roles in tumor metabolic reprogramming and immunometabolism. Classical and emerging approaches are delineated to broaden the boundaries of research on the crosstalk research on the crosstalk between tumor immunometabolism and epigenomics. Furthermore, we discuss potential therapeutic strategies that target tumor immunometabolism to modulate epigenomic modifications, highlighting the burgeoning synergy between metabolic therapies and immunotherapy as a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Xie
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
- Center of Clinical Research, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Hanqing Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
2
|
Martinis E, Tonon S, Colamatteo A, La Cava A, Matarese G, Pucillo CEM. B cell immunometabolism in health and disease. Nat Immunol 2025; 26:366-377. [PMID: 39984733 DOI: 10.1038/s41590-025-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
B cells have crucial roles in the initiation and progression of many pathological conditions, and several therapeutic strategies have targeted the function of these cells. The advent of immunometabolism has provided compelling evidence that the metabolic reprogramming of immune cells can dramatically alter physiopathological immune activities. A better knowledge of the metabolic profiles of B cells can provide valuable means for developing therapies tuning defined cell pathways. Here we review the cellular and molecular mechanisms by which immunometabolism controls the physiology and pathophysiology of B cells and discuss the experimental evidence linking B cell metabolism to health, autoimmunity, and cancer. Considering that several metabolic pathways in B cells are involved differently, or even in opposite ways, in health and disease, we discuss how targeted modulation of B cell immunometabolism could be exploited mechanistically to rebalance abnormal B cell functions that have become altered in disease states.
Collapse
Affiliation(s)
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
| | - Antonio La Cava
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy.
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale 'G. Salvatore' - Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.
| | | |
Collapse
|
3
|
Saadh MJ, Ghnim ZS, Mahdi MS, Chandra M, Ballal S, Bareja L, Chaudhary K, Sharma RSK, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. Decoding the Role of Kinesin Superfamily Proteins in Glioma Progression. J Mol Neurosci 2025; 75:10. [PMID: 39847238 DOI: 10.1007/s12031-025-02308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets. We discuss how KIFs influence key aspects of glioma biology, including cell proliferation, invasion, migration, and metastasis. Furthermore, we explore the regulation of the cell cycle and critical signaling pathways associated with glioma, such as PI3K-Akt, Wnt/β-catenin, and Hedgehog signaling by KIFs. The review also addresses the emerging interplay between KIFs and non-coding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), in glioma progression. Finally, we examine current therapeutic strategies targeting KIFs, including immunotherapy, chemotherapy, and small-molecule inhibitors, and their potential to improve treatment outcomes for glioma patients. By synthesizing these insights, this review underscores the significance of KIFs in glioma pathogenesis and their promise as novel therapeutic targets in the fight against glioma.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Muktesh Chandra
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
4
|
Kumar V. Ignoring Gender-Based Immunometabolic Reprograming, a Risky Business in Immune-Based Precision Medicine. FRONT BIOSCI-LANDMRK 2025; 30:27118. [PMID: 39862095 DOI: 10.31083/fbl27118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/27/2025]
Abstract
Immunology advances have increased our understanding of autoimmune, auto-inflammatory, immunodeficiency, infectious, and other immune-mediated inflammatory diseases (IMIDs). Furthermore, evidence is growing for the immune involvement in aging, metabolic and neurodegenerative diseases, and different cancers. However, further research has indicated sex/gender-based immune differences, which further increase higher incidences of various autoimmune diseases (AIDs), such as systemic lupus erythematosus (SLE), myasthenia gravis, and rheumatoid arthritis (RA) in females. On the other hand, reproductive-age females also show a more potent immune response against infections and vaccines than their age-matched males-furthermore, some immune-based therapies, including immune checkpoint inhibitors (ICIs), show gender-based efficacy and adverse events. Metabolic demands are different in males and females. Immune cell function and polarization are also governed by their metabolic reprogramming, called immunometabolism and immunometabolic reprogramming (IR). Therefore, sex/gender-associated immune differences and their involvement in immune-mediated diseases and immune-based therapeutics indicate the demand for gender-based IR studies to increase the efficacy of immune-based precision medicine.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
5
|
Flory M, Bravo P, Alam A. Impact of gut microbiota and its metabolites on immunometabolism in colorectal cancer. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00050. [PMID: 39624362 PMCID: PMC11608621 DOI: 10.1097/in9.0000000000000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 01/25/2025]
Abstract
Colorectal cancer (CRC) is highly prevalent, accounting for approximately one-tenth of cancer cases and deaths globally. It stands as the second most deadly and third most common cancer type. Although the gut microbiota has been implicated in CRC carcinogenesis for the last several decades, it remains one of the least understood risk factors for CRC development, as the gut microbiota is highly diverse and variable. Many studies have uncovered unique microbial signatures in CRC patients compared with healthy matched controls, with variations dependent on patient age, disease stage, and location. In addition, mechanistic studies revealed that tumor-associated bacteria produce diverse metabolites, proteins, and macromolecules during tumor development and progression in the colon, which impact both cancer cells and immune cells. Here, we summarize microbiota's role in tumor development and progression, then we discuss how the metabolic alterations in CRC tumor cells, immune cells, and the tumor microenvironment result in the reprogramming of activation, differentiation, functions, and phenotypes of immune cells within the tumor. Tumor-associated microbiota also undergoes metabolic adaptation to survive within the tumor environment, leading to immune evasion, accumulation of mutations, and impairment of immune cells. Finally, we conclude with a discussion on the interplay between gut microbiota, immunometabolism, and CRC, highlighting a complex interaction that influences cancer development, progression, and cancer therapy efficacy.
Collapse
Affiliation(s)
- Madison Flory
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Paloma Bravo
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Ashfaqul Alam
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front Immunol 2024; 15:1353787. [PMID: 39119332 PMCID: PMC11306065 DOI: 10.3389/fimmu.2024.1353787] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
7
|
Kumar V, Stewart Iv JH. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J Innate Immun 2024; 16:295-323. [PMID: 38740018 PMCID: PMC11250681 DOI: 10.1159/000539278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Pochini L, Barone F, Console L, Brunocilla C, Galluccio M, Scalise M, Indiveri C. OCTN1 (SLC22A4) displays two different transport pathways for organic cations or zwitterions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184263. [PMID: 38092232 DOI: 10.1016/j.bbamem.2023.184263] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND OCTN1 belongs to the SLC22 family, which includes transporters for cationic, zwitterionic, and anionic substrates. OCTN1 function and role in cells are still poorly understood. Not only cations, such as TEA, but also zwitterions, such as carnitine and ergothioneine, figure among transported molecules. METHODS In this work, we carried out transport assays measuring [14C]-TEA and [3H]-Carnitine in proteoliposomes reconstituted with the recombinant human OCTN1 in the presence of Na+ or other cations. The homology model of OCTN1 was built using the structure of OCT3 as a template for docking analysis. RESULTS TEA and carnitine did not inhibit each other. Moreover, carnitine uptake was not affected by the presence of Na+ and TEBA, whereas TEA was strongly inhibited by both compounds. Computational data revealed that TEA, Na+, and carnitine can interact with E381 in the OCTN1 substrate site. Differently from TEA, in the presence of Na+, carnitine is still able to interact with the binding site via R469. CONCLUSIONS The lack of mutual inhibition of the two prototype substrates, the different effect of Na+ and TEBA on their transport reaction, together with the computational analysis supports the existence of two transport pathways for cations and zwitterions. GENERAL SIGNIFICANCE The results shed new light on the transport mechanisms of OCTN1, helping to get further insights into the structure/function relationships. The described results correlate well with previous and very recent findings on the polyspecificity of the OCT group of transporters belonging to the same family.
Collapse
Affiliation(s)
- Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Barone
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Chiara Brunocilla
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
9
|
Kumar V, Stewart JH. Immune Homeostasis: A Novel Example of Teamwork. Methods Mol Biol 2024; 2782:1-24. [PMID: 38622389 DOI: 10.1007/978-1-0716-3754-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
All living organisms must maintain homeostasis to survive, reproduce, and pass their traits on to the next generation. If homeostasis is not maintained, it can result in various diseases and ultimately lead to death. Physiologists have coined the term "homeostasis" to describe this process. With the emergence of immunology as a separate branch of medicine, the concept of immune homeostasis has been introduced. Maintaining immune homeostasis is crucial to support overall homeostasis through different immunological and non-immunological routes. Any changes in the immune system can lead to chronic inflammatory or autoimmune diseases, immunodeficiency diseases, frequent infections, and cancers. Ongoing scientific advances are exploring new avenues in immunology and immune homeostasis maintenance. This chapter introduces the concept of immune homeostasis and its maintenance through different mechanisms.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
11
|
Taurino G, Chiu M, Bianchi MG, Griffini E, Bussolati O. The SLC38A5/SNAT5 amino acid transporter: from pathophysiology to pro-cancer roles in the tumor microenvironment. Am J Physiol Cell Physiol 2023; 325:C550-C562. [PMID: 37458433 DOI: 10.1152/ajpcell.00169.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
SLC38A5/SNAT5 is a system N transporter that can mediate net inward or outward transmembrane fluxes of neutral amino acids coupled with Na+ (symport) and H+ (antiport). Its preferential substrates are not only amino acids with side chains containing amide (glutamine and asparagine) or imidazole (histidine) groups, but also serine, glycine, and alanine are transported by the carrier. Expressed in the pancreas, intestinal tract, brain, liver, bone marrow, and placenta, it is regulated at mRNA and protein levels by mTORC1 and WNT/β-catenin pathways, and it is sensitive to pH, nutritional stress, inflammation, and hypoxia. SNAT5 expression has been found to be altered in pathological conditions such as chronic inflammatory diseases, gestational complications, chronic metabolic acidosis, and malnutrition. Growing experimental evidence shows that SNAT5 is overexpressed in several types of cancer cells. Moreover, recently published results indicate that SNAT5 expression in stromal cells can support the metabolic exchanges occurring in the tumor microenvironment of asparagine-auxotroph tumors. We review the functional role of the SNAT5 transporter in pathophysiology and propose that, due to its peculiar operational and regulatory features, SNAT5 may play important pro-cancer roles when expressed either in neoplastic or in stromal cells of glutamine-auxotroph tumors.NEW & NOTEWORTHY The transporter SLC38A5/SNAT5 provides net influx or efflux of glutamine, asparagine, and serine. These amino acids are of particular metabolic relevance in several conditions. Changes in transporter expression or activity have been described in selected types of human cancers, where SNAT5 can mediate amino acid exchanges between tumor and stromal cells, thus providing a potential therapeutic target. This is the first review that recapitulates the characteristics and roles of the transporter in physiology and pathology.
Collapse
Affiliation(s)
- Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, University of Parma, Parma, Italy
| | - Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, University of Parma, Parma, Italy
| | - Erika Griffini
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Kumar V, Bauer C, Stewart JH. TIME Is Ticking for Cervical Cancer. BIOLOGY 2023; 12:941. [PMID: 37508372 PMCID: PMC10376148 DOI: 10.3390/biology12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Cervical cancer (CC) is a major health problem among reproductive-age females and comprises a leading cause of cancer-related deaths. Human papillomavirus (HPV) is the major risk factor associated with CC incidence. However, lifestyle is also a critical factor in CC pathogenesis. Despite HPV vaccination introduction, the incidence of CC is increasing worldwide. Therefore, it becomes critical to understand the CC tumor immune microenvironment (TIME) to develop immune cell-based vaccination and immunotherapeutic approaches. The current article discusses the immune environment in the normal cervix of adult females and its role in HPV infection. The subsequent sections discuss the alteration of different immune cells comprising CC TIME and their targeting as future therapeutic approaches.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| |
Collapse
|
13
|
Kumar V, Bauer C, Stewart JH. Targeting cGAS/STING signaling-mediated myeloid immune cell dysfunction in TIME. J Biomed Sci 2023; 30:48. [PMID: 37380989 PMCID: PMC10304357 DOI: 10.1186/s12929-023-00942-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Myeloid immune cells (MICs) are potent innate immune cells serving as first responders to invading pathogens and internal changes to cellular homeostasis. Cancer is a stage of altered cellular homeostasis that can originate in response to different pathogens, chemical carcinogens, and internal genetic/epigenetic changes. MICs express several pattern recognition receptors (PRRs) on their membranes, cytosol, and organelles, recognizing systemic, tissue, and organ-specific altered homeostasis. cGAS/STING signaling is a cytosolic PRR system for identifying cytosolic double-stranded DNA (dsDNA) in a sequence-independent but size-dependent manner. The longer the cytosolic dsDNA size, the stronger the cGAS/STING signaling activation with increased type 1 interferon (IFN) and NF-κB-dependent cytokines and chemokines' generation. The present article discusses tumor-supportive changes occurring in the tumor microenvironment (TME) or tumor immune microenvironment (TIME) MICs, specifically emphasizing cGAS/STING signaling-dependent alteration. The article further discusses utilizing MIC-specific cGAS/STING signaling modulation as critical tumor immunotherapy to alter TIME.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Surgery, Section of Surgical Oncology, Louisiana State University New Orleans-Louisiana Children's Medical Center Cancer Center, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| |
Collapse
|