1
|
Wahnou H, El Kebbaj R, Hba S, Ouadghiri Z, El Faqer O, Pinon A, Liagre B, Limami Y, Duval RE. Neutrophils and Neutrophil-Based Drug Delivery Systems in Anti-Cancer Therapy. Cancers (Basel) 2025; 17:1232. [PMID: 40227814 PMCID: PMC11988188 DOI: 10.3390/cancers17071232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
Neutrophils, the most abundant white blood cells, play a dual role in cancer progression. While they can promote tumor growth, metastasis, and immune suppression, they also exhibit anti-tumorigenic properties by attacking cancer cells and enhancing immune responses. This review explores the complex interplay between neutrophils and the tumor microenvironment (TME), highlighting their ability to switch between pro- and anti-tumor phenotypes based on external stimuli. Pro-tumorigenic neutrophils facilitate tumor growth through mechanisms such as neutrophil extracellular traps (NETs), secretion of pro-inflammatory cytokines, and immune evasion strategies. They contribute to angiogenesis, tumor invasion, and metastasis by releasing vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Conversely, anti-tumor neutrophils enhance cytotoxicity by generating reactive oxygen species (ROS), promoting antibody-dependent cell-mediated cytotoxicity (ADCC), and activating other immune cells such as cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Recent advances in neutrophil-based drug delivery systems have harnessed their tumor-homing capabilities to improve targeted therapy. Neutrophil-mimicking nanoparticles and membrane-coated drug carriers offer enhanced drug accumulation in tumors, reduced systemic toxicity, and improved therapeutic outcomes. Additionally, strategies to modulate neutrophil activity, such as inhibiting their immunosuppressive functions or reprogramming them towards an anti-tumor phenotype, are emerging as promising approaches in cancer immunotherapy. Understanding neutrophil plasticity and their interactions with the TME provides new avenues for therapeutic interventions. Targeting neutrophil-mediated mechanisms could enhance existing cancer treatments and lead to the development of novel immunotherapies, ultimately improving patient survival and clinical outcomes.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (S.H.); (Z.O.); (O.E.F.)
| | - Riad El Kebbaj
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco;
| | - Soufyane Hba
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (S.H.); (Z.O.); (O.E.F.)
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Zaynab Ouadghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (S.H.); (Z.O.); (O.E.F.)
| | - Othman El Faqer
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (S.H.); (Z.O.); (O.E.F.)
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Youness Limami
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco;
| | | |
Collapse
|
2
|
Liu Z, Dou Y, Lu C, Han R, He Y. Neutrophil extracellular traps in tumor metabolism and microenvironment. Biomark Res 2025; 13:12. [PMID: 39849606 PMCID: PMC11756210 DOI: 10.1186/s40364-025-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, web-like formations composed of DNA, histones, and antimicrobial proteins, released by neutrophils. These structures participate in a wide array of physiological and pathological activities, including immune rheumatic diseases and damage to target organs. Recently, the connection between NETs and cancer has garnered significant attention. Within the tumor microenvironment and metabolism, NETs exhibit multifaceted roles, such as promoting the proliferation and migration of tumor cells, influencing redox balance, triggering angiogenesis, and driving metabolic reprogramming. This review offers a comprehensive analysis of the link between NETs and tumor metabolism, emphasizing areas that remain underexplored. These include the interaction of NETs with tumor mitochondria, their effect on redox states within tumors, their involvement in metabolic reprogramming, and their contribution to angiogenesis in tumors. Such insights lay a theoretical foundation for a deeper understanding of the role of NETs in cancer development. Moreover, the review also delves into potential therapeutic strategies that target NETs and suggests future research directions, offering new perspectives on the treatment of cancer and other related diseases.
Collapse
Affiliation(s)
- Zhanrui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Bishan hospital of Chongqing medical university, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
3
|
LI C, PENG D, SUN W. [Dual Roles of Neutrophil Extracellular Traps in Lung Cancer:
Mechanism Exploration and Therapeutic Prospects]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:63-68. [PMID: 39988441 PMCID: PMC11848645 DOI: 10.3779/j.issn.1009-3419.2025.101.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Indexed: 02/25/2025]
Abstract
Lung cancer is one of the most common and lethal malignancies in China. In the context of the tumor microenvironment, neutrophil extracellular traps (NETs) released by neutrophils exert a profound impact on the occurrence and progression of lung cancer. Although the exact mechanisms by which NETs promote tumor growth have not been fully elucidated, existing research has revealed their multiple roles in tumor growth, invasion, metastasis, and cancer-related thrombosis. This article will review the molecular biology mechanisms and research progress of NETs in lung cancer based on recent studies.
.
Collapse
|
4
|
Wang P, Zhu Z, Hou C, Xu D, Guo F, Zhi X, Liang W, Xue J. FGF19 is a biomarker associated with prognosis and immunity in colorectal cancer. Int J Immunopathol Pharmacol 2025; 39:3946320251324401. [PMID: 40162957 PMCID: PMC11960187 DOI: 10.1177/03946320251324401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the relationship between fibroblast growth factor 19 (FGF19) and the prognosis and immune infiltration of colorectal cancer (CRC) and identify the related genes and pathways influencing the onset and progression of CRC. INTRODUCTION The potential of FGF19 to guide the prognosis of CRC and inform immunotherapeutic strategies warrants further investigation. METHODS We performed Quantitative Real-Time PCR to assess the expression of FGF19 and conducted a bioinformatics analysis to evaluate the impact of FGF19 expression on the clinical prognosis of CRC. We also analyzed the association between FGF19 expression and immune cell infiltration in CRC, and explored the related genes and pathways through which FGF19 influences CRC development. RESULTS CRC patients with higher FGF19 expression exhibited a poorer prognosis. In terms of the Receiver Operating Characteristic (ROC), FGF19 achieved an area under the curve (AUC) of 0.904. FGF19 expression correlated with the N stage, M stage, and pathological stage in patients with CRC. Functional enrichment analysis revealed significant enrichment of FGF19 in pathways associated with tumor development. ssGSEA and Spearman correlation analysis demonstrated that FGF19 expression was linked to tumor immune cells. We discovered that FGF19 is closely related to neutrophil extracellular traps (NETs), which play a significant role in the immune microenvironment. CONCLUSION FGF19 is a key gene associated with immunity and prognosis in CRC patients. Our findings suggest that FGF19 may influence CRC progression by promoting NETs expression, which leads to suppression of immune cells.
Collapse
Affiliation(s)
- Peng Wang
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Zhenpeng Zhu
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Chenyang Hou
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Dandan Xu
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Fei Guo
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Weizheng Liang
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Jun Xue
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| |
Collapse
|
5
|
Xia M, Han Y, Sun L, Li D, Zhu C, Li D. The role of neutrophils in osteosarcoma: insights from laboratory to clinic. Front Immunol 2024; 15:1490712. [PMID: 39582869 PMCID: PMC11582048 DOI: 10.3389/fimmu.2024.1490712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly influenced by the intricate interactions within its tumor microenvironment (TME), particularly involving neutrophils. This review delineates the multifaceted roles of neutrophils, including tumor-associated neutrophils (TANs) and neutrophil extracellular traps (NETs), in osteosarcoma's pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating tumor growth and immune evasion, while NETs facilitate tumor cell adhesion, migration, and immunosuppression. Clinically, neutrophil-related markers such as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes, highlighting the potential for neutrophil-targeted therapies. Unraveling these complex interactions is crucial for developing novel treatment strategies that harness the TME to improve osteosarcoma management.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongsong Li
- Department of Orthopedics, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
6
|
Zhao Y, Wang L, Zhang X, Zhang L, Wei F, Li S, Li Y. Identification of neutrophil extracellular traps genes as potential biomarkers in psoriasis based on bioinformatics analysis. Sci Rep 2024; 14:23848. [PMID: 39394253 PMCID: PMC11470069 DOI: 10.1038/s41598-024-75069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
The epidermal infiltration of neutrophils is a hallmark of psoriasis (PSO) and its activation leads to the release of neutrophil extracellular traps (NETs). However, the molecular mechanism of NETs-related genes (NETRGs) has not been extensively studied in PSO. To define NETs-related-biomarkers for PSO. The GSE13355 and GSE78097 datasets, and NETRGs gene set were included in this study. The datasets used in this study were all microarray data. The weighted gene co-expression network analysis (WGCNA) and machine learning algorithms were used to mine key genes. Later on, single-gene gene set enrichment analysis (GSEA) and immune infiltration analysis were implemented. Finally, the expression of key genes was verified using quantitative real-time fluorescence PCR (qRT-PCR). A total of 3 key genes (S100A9, CLEC7A, and CXCR4) were derived, and they all had excellent diagnostic performance. The single-gene GSEA enrichment results indicated that the key genes were mainly enriched in the chemokine signaling pathway and humoral immune response in the high-expression group, while focal adhesion was enriched in the low-expression group. The correlation analysis indicated that all key genes were strongly negatively correlated with resting mast cells and TGF-β family member receptor, while they were strongly positively correlated with activated CD4 memory T cells and antigen processing and presentation. Lastly, the experimental results showed that the expression trends of key genes were consistent with public database. In this study, we successfully screened three potential PSO diagnostic genes (S100A9, CLEC7A and CXCR4) that were closely related to NETs, and these findings not only provided new molecular marker candidates for the precise diagnosis of PSO patients, but also revealed possible future therapeutic targets. However, further in-depth research and validation were necessary.
Collapse
Affiliation(s)
- Yike Zhao
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ling Wang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaoguang Zhang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Lihua Zhang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Feng Wei
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Suyue Li
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yanling Li
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
7
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Tin W, Xiao C, Sun K, Zhao Y, Xie M, Zheng J, Wang Y, Liu S, Yu U. TRIM8 as a predictor for prognosis in childhood acute lymphoblastic leukemia based on a signature of neutrophil extracellular traps. Front Oncol 2024; 14:1427776. [PMID: 39224802 PMCID: PMC11366590 DOI: 10.3389/fonc.2024.1427776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) can be attributed to the metastasis, occurrence, and immune evasion of cancer cells. We investigated the prognostic value of NET-related genes in childhood acute lymphoblastic leukemia (cALL) patients. Methods Differential gene expression analysis was conducted on samples collected from public databases. Grouping them based on the expression level of NET-related genes, we assessed the correlation between immune cell types and the risk score for having a poor prognosis of cALL, with an evaluation of the sensitivity of drugs used in cALL. We further divided the groups, integrating survival data. Subsequently, methods including multivariable Cox algorithms, least absolute shrinkage and selection operator (LASSO), and univariable were utilized to create a risk model predicting prognosis. Experiments in cell lines and animals were performed to explore the functions of TRIM8, a gene selected by the model. To validate the role of TRIM8 in leukemia development, lentivirus-mediated overexpression or knockdown of TRIM8 was employed in mice with T-ALL and B-ALL. Results Kaplan-Meier (KM) analysis underscored the importance of differentially expressed genes identified in the groups divided by genes participated in NETs, with enrichment analysis showing the mechanism. Correlation analysis revealed significant associations with B cells, NK cells, mast cells, T cells, plasma cells, dendritic cells, and monocytes. The IC50 values of drugs such as all-trans-retinoic acid (ATRA), axitinib, doxorubicin, methotrexate, sorafenib, and vinblastine were increased, while dasatinib exhibited a lower IC50. A total of 13 NET-related genes were selected in constructing the risk model. In the training, testing, and merged cohorts, KM analysis demonstrated significantly improved survival for low-risk cALL patients compared to high-risk cALL patients (p < 0.001). The area under the curve (AUC) indicated strong predictive performance. Experiments in Jurkat and SUP-B15 revealed that TRIM8 knockdown decreased the proliferation of leukemia cell lines. Further experiments demonstrated a more favorable prognosis in mice with TRIM8-knockdown leukemia cells. Results of cell lines and animals showed better outcomes in prognosis when TRIM8 was knocked down. Conclusion We identified a novelty in a prognostic model that could aid in the development of personalized treatments for cALL patients. Furthermore, it revealed that the expression of TRIM8 is a contributing factor to the proliferation of leukemia cells and worsens the prognosis of cALL.
Collapse
Affiliation(s)
- Waihin Tin
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuilan Xiao
- Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Maternal and Child Health of Haizhu District, Guangzhou, China
| | - Kexin Sun
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yijun Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyun Xie
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayin Zheng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Hematology, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
9
|
Benavent N, Cañete A, Argilés B, Juan-Ribelles A, Bonanad S, Oto J, Medina P. Delving into the clinical impact of NETs in pediatric cancer. Pediatr Res 2024:10.1038/s41390-024-03437-4. [PMID: 39095576 DOI: 10.1038/s41390-024-03437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Pediatric cancer, a complex and heterogeneous group of diseases, continues to challenge medical research and treatment strategies. Despite advances in precision medicine and immunotherapy, certain aggressive subtypes of pediatric cancer are resistant to conventional therapies, requiring further exploration of potential therapeutic targets. Neutrophil extracellular traps (NETs), net-like structures released by neutrophils, have emerged as a potential player in the pediatric cancer landscape. However, our understanding of their role in pediatric oncology remains limited. This systematic review examines the current state of the NETs literature in pediatric cancer, focusing on the most frequent subtypes. The review reveals the scarcity of research in this area, highlighting the need for further investigation. The few studies available suggest that NETs may influence infection risk, treatment resistance and prognosis in certain pediatric malignancies. Although the field is still in its infancy, it holds great promise for advancing our understanding of pediatric cancer biology and potential therapeutic pathways. IMPACT: This review identifies a significant gap in research on neutrophil extracellular traps (NETs) in pediatric cancer. It provides a summary of existing studies and their promising findings and potential, as well as a comprehensive overview of current research on NETs in certain tumor types. It also emphasizes the lack of specific studies in pediatric cancer. The review encourages the prioritization of NET research in pediatric oncology, with the aim of improving prognosis and developing new treatments through increased understanding and targeted studies.
Collapse
Affiliation(s)
- Nuria Benavent
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.
| | - Adela Cañete
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Bienvenida Argilés
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Antonio Juan-Ribelles
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Santiago Bonanad
- Thrombosis and Haemostasis Unit, Hematology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
10
|
Sun H, Li S, Wang Q, Luo C, Zhong L, Wan G, Li Z, Zhao G, Bu X, Zeng M, Feng G. Formyl peptide enhances cancer immunotherapy by activating antitumoral neutrophils, and T cells. Biomed Pharmacother 2024; 175:116670. [PMID: 38692065 DOI: 10.1016/j.biopha.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Neutrophils are heterogeneous and plastic, with the ability to polarize from antitumour to protumour phenotype and modulate tumour microenvironment components. While some advances have been made, the neutrophil-targeting therapy remains underexplored. Activation of formyl peptide receptors (FPRs) by formylated peptides is needed for local control of infection through the recruitment of activated neutrophils while the potential contribution of antitumour activity remains underexplored. Here, we demonstrate that neutrophils can be harnessed to suppress tumour growth through the action of the formyl peptide (FP) on the formyl peptide receptor (FPR). Mechanistically, FP efficiently recruits neutrophils to produce reactive oxygen species production (ROS), resulting in the direct killing of tumours. Antitumour functions disappeared when neutrophils were depleted by anti-Ly6G antibodies. Interestingly, extensive T-cell activation was observed in mouse tumours treated with FP, showing the potential to alter the immune suppressed tumour microenvironment (TME) and further sensitize mice to anti-PD1 therapy. Transcriptomic and flow cytometry analyses revealed the mechanisms of FP-sensitized anti-PD1 therapy, mainly including stimulated neutrophils and an altered immune-suppressed tumour microenvironment. Collectively, these data establish FP as an effective combination partner for sensitizing anti-PD1 therapy by stimulating tumour-infiltrated neutrophils.
Collapse
Affiliation(s)
- Haixia Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China; Department of Pharmacy, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Shuxin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Chunxiang Luo
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-Sen University, Nanning 530022, China
| | - Lanyi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Guohui Wan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ziqian Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Gexin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China.
| |
Collapse
|
11
|
Chen J, Xu Y, Yu F, Ma Z, Yu J, Zhang X. NETs: an extracellular DNA network structure with implication for cardiovascular disease and cancer. Hypertens Res 2024; 47:1260-1272. [PMID: 38443616 DOI: 10.1038/s41440-023-01574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 03/07/2024]
Abstract
Cardiovascular (CV) diseases and tumors are best known for its high morbidity and mortality worldwide. There is a growing recognition of the association between CV diseases and tumorigenesis. In addition to CV damage caused by anti-tumor drugs and tumor-induced organ dysfunction, CV events themselves and their treatment may also have a role in promoting tumorigenesis. Therefore, Therefore, the diagnosis and treatment of the two kinds of diseases have entered the era of clinical convergence. Emerging evidence indicates significant biologic overlap between cancer and CV diseases, with the recognition of shared biologic mechanisms. Neutrophil extracellular traps (NETs) represent an immune mechanism of neutrophils promoting the development of tumors and their metastasis. It has been recently demonstrated that NETs exist in various stages of hypertension and heart failure, exacerbating disease progression. At present, most studies focus on the biological role of NETs in CV diseases and tumor respectively, and there are relatively few studies on the specific regulatory mechanisms and effects of NETs in cardiovascular diseases associated with tumors. In this narrative review, we summarize some recent basic and clinical findings on how NETs are involved in the pathogenesis of cardiovascular diseases associated with tumors. We also highlight that the development of treatments targeting NETs may be one of the effective ways to prevent and treat cardiovascular diseases associated with tumors.
Collapse
Affiliation(s)
- Jianshu Chen
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yuansheng Xu
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Fei Yu
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zhengke Ma
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jing Yu
- Lanzhou University Second Hospital, Lanzhou, 730030, China
- Lanzhou University Second College of Clinical Medicine, Lanzhou, 730030, China
| | - Xiaowei Zhang
- Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Lanzhou University Second College of Clinical Medicine, Lanzhou, 730030, China.
| |
Collapse
|
12
|
Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, Qiao W, Chen H. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci 2023; 13:230. [PMID: 38124132 PMCID: PMC10734085 DOI: 10.1186/s13578-023-01188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Type I interferon (IFN-I) plays crucial roles in the regulation of inflammation and it is associated with various inflammatory diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and periodontitis, impacting people's health and quality of life. It is well-established that IFN-Is affect immune responses and inflammatory factors by regulating some signaling. However, currently, there is no comprehensive overview of the crucial regulatory role of IFN-I in distinctive pathways as well as associated inflammatory diseases. This review aims to provide a narrative of the involvement of IFN-I in different signaling pathways, mainly mediating the related key factors with specific targets in the pathways and signaling cascades to influence the progression of inflammatory diseases. As such, we suggested that IFN-Is induce inflammatory regulation through the stimulation of certain factors in signaling pathways, which displays possible efficient treatment methods and provides a reference for the precise control of inflammatory diseases.
Collapse
Affiliation(s)
- Ling Ji
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Tianle Li
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Huimin Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
- Division of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| | - Hui Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|