1
|
Liu X, Feng Y, Song Z, Liu J, Luo Z, Yu G, Wang J. Novel and effective tandem CD38 and CD19 targeting CAR-T cells inhibit hematological tumor immune escape. Cell Immunol 2025; 411-412:104950. [PMID: 40239552 DOI: 10.1016/j.cellimm.2025.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Targeting CD19 with chimeric antigen receptor (CAR)-T cells is clinically effective, but tumor immune escape and tumor recurrence still occur. Designing CAR-T cells that target multiple antigens simultaneously is a viable approach for inhibiting tumor immune escape, and promising findings have been reported. In this study, we designed new CD19 and CD38 dual-target CAR-T cells that are strongly cytotoxic to target cells expressing CD19 or CD38. In vitro studies, compared with single-target CAR-T cells or CD19/CD38 tandem (Tan) CAR-T cells, CD38/CD19 Tan CAR-T cells presented similar CAR expression, superior cytotoxicity and antigen-stimulated T-cell proliferation. In vivo studies, CD38/CD19 Tan CAR-T cells demonstrated the same efficacy and safety as single-target CAR-T. These CD19/CD38 Tan CAR-T cells are fully compatible with existing clinical-grade T-cell manufacturing procedures and can be implemented using current clinical protocols. In summary, our findings provide an effective solution to the challenge of tumor immune escape in anti-CD19 CAR-T-cell therapy.
Collapse
Affiliation(s)
- Xiuying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yaru Feng
- Junjo Biopharmaceutical Co., Ltd., Zhongshan 528437, China
| | - Zhiru Song
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingjing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiqiang Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen 518118, China.
| |
Collapse
|
2
|
Arroyo-Ródenas J, Falgas A, Díez-Alonso L, Martinez-Moreno A, Roca-Ho H, Gil-Etayo FJ, Pérez-Pons A, Aguilar-Sopeña Ó, Velasco-Sidro M, Gómez-Rosel M, Jiménez-Matías B, Muñoz-Sánchez G, Pacheco Y, Bravo-Martín C, Ramírez-Fernández Á, Jiménez-Reinoso A, González-Navarro EA, Juan M, Orfao A, Blanco B, Roda-Navarro P, Bueno C, Menéndez P, Álvarez-Vallina L. CD22 CAR-T cells secreting CD19 T-cell engagers for improved control of B-cell acute lymphoblastic leukemia progression. J Immunother Cancer 2025; 13:e009048. [PMID: 40306957 PMCID: PMC12049870 DOI: 10.1136/jitc-2024-009048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND CD19-directed cancer immunotherapies, based on engineered T cells bearing chimeric antigen receptors (CARs, CAR-T cells) or the systemic administration of bispecific T cell-engaging (TCE) antibodies, have shown impressive clinical responses in relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, more than half of patients relapse after CAR-T or TCE therapy, with antigen escape or lineage switching accounting for one-third of disease recurrences. To minimize tumor escape, dual-targeting CAR-T cell therapies simultaneously targeting CD19 and CD22 have been developed and validated both preclinically and clinically. METHODS We have generated the first dual-targeting strategy for B-cell malignancies based on CD22 CAR-T cells secreting an anti-CD19 TCE antibody (CAR-STAb-T) and conducted a comprehensive preclinical characterization comparing its therapeutic potential in B-ALL with that of previously validated dual-targeting CD19/CD22 tandem CAR cells (TanCAR-T cells) and co-administration of two single-targeting CD19 and CD22 CAR-T cells (pooled CAR-T cells). RESULTS We demonstrate that CAR-STAb-T cells efficiently redirect bystander T cells, resulting in higher cytotoxicity of B-ALL cells than dual-targeting CAR-T cells at limiting effector:target ratios. Furthermore, when antigen loss was replicated in a heterogeneous B-ALL cell model, CAR-STAb T cells induced more potent and effective cytotoxic responses than dual-targeting CAR-T cells in both short- and long-term co-culture assays, reducing the risk of CD19-positive leukemia escape. In vivo, CAR-STAb-T cells also controlled leukemia progression more efficiently than dual-targeting CAR-T cells in patient-derived xenograft mouse models under T cell-limiting conditions. CONCLUSIONS CD22 CAR-T cells secreting CD19 T-cell engagers show an enhanced control of B-ALL progression compared with CD19/CD22 dual CAR-based therapies, supporting their potential for clinical testing.
Collapse
Affiliation(s)
- Javier Arroyo-Ródenas
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aida Falgas
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alba Martinez-Moreno
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, Madrid, Spain
| | - Heleia Roca-Ho
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Gil-Etayo
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alba Pérez-Pons
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC; CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (i+12), Madrid, Spain
| | - Miriam Velasco-Sidro
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marina Gómez-Rosel
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Beatriz Jiménez-Matías
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Yedra Pacheco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Clara Bravo-Martín
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (i+12), Madrid, Spain
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Manel Juan
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Inmunología, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC; CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (i+12), Madrid, Spain
| | - Clara Bueno
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC; CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC; CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Hospital Sant Joan de Déu-Pediatric Cancer Center Barcelona (SJD-PCCB), Barcelona, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CNIO-HMRIB Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Hospital del Mar Research Institute Barcelona (HMRIB), Madrid/Barcelona, Spain
- Banc de Sang i Teixits (BST), Barcelona, Spain
| |
Collapse
|
3
|
Domizi P, Sarno J, Jager A, Merchant M, Pacheco KZB, Yamada-Hunter SA, Rotiroti MC, Liu Y, Baskar R, Reynolds WD, Sworder BJ, Sahaf B, Bendall SC, Mullighan CG, Alizadeh AA, Leahy AB, Myers RM, Yates B, Wang HW, Shah NN, Majzner RG, Mackall CL, Grupp SA, Barrett DM, Sotillo E, Davis KL. IKAROS levels are associated with antigen escape in CD19- and CD22-targeted therapies for B-cell malignancies. Nat Commun 2025; 16:3800. [PMID: 40268897 PMCID: PMC12019336 DOI: 10.1038/s41467-025-58868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Antigen escape relapse is a major challenge in targeted immunotherapies, including CD19- and CD22-directed chimeric antigen receptor (CAR) T-cell for B-cell acute lymphoblastic leukemia (B-ALL). To identify tumor-intrinsic factors driving antigen loss, we perform single-cell analyses on 61 B-ALL patient samples treated with CAR T cells. Here we show that low levels of IKAROS in pro-B-like B-ALL cells before CAR T treatment correlate with antigen escape. IKAROSlow B-ALL cells undergo epigenetic and transcriptional changes that diminish B-cell identity, making them resemble progenitor cells. This shift leads to reduced CD19 and CD22 surface expression. We demonstrate that CD19 and CD22 expression is IKAROS dose-dependent and reversible. Furthermore, IKAROSlow cells exhibit higher resistance to CD19- and CD22-targeted therapies. These findings establish a role for IKAROS as a regulator of antigens targeted by widely used immunotherapies and in the risk of antigen escape relapse, identifying it as a potential prognostic target.
Collapse
Affiliation(s)
- Pablo Domizi
- Department of Pediatrics, Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| | - Jolanda Sarno
- Department of Pediatrics, Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20126, Milan, Italy
| | - Astraea Jager
- Department of Pediatrics, Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Milton Merchant
- Department of Pediatrics, Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kaithlen Zen B Pacheco
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean A Yamada-Hunter
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Yuxuan Liu
- Department of Pediatrics, Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Reema Baskar
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Warren D Reynolds
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian J Sworder
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ash A Alizadeh
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Allison B Leahy
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina M Myers
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robbie G Majzner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephan A Grupp
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Lalu MM, Igweokpala S, Kekre N, Jeffers MS, Montroy J, Ghiasi M, Hay K, McComb S, Weeratna R, Atkins H, Hutton B, Yahya A, Masurekar A, Giguere P, Sabri E, Sobh M, Fergusson DA. Identifying Modifiers of CAR T-Cell Therapeutic Efficacy and Safety: A Systematic Review and Individual Patient Data Meta-Analysis. Transfus Med Rev 2025; 39:150897. [PMID: 40280037 DOI: 10.1016/j.tmrv.2025.150897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
CAR T-cell therapy is effective in relapsed/refractory hematologic malignancies, but its use has been tempered by heterogeneity in response and safety outcomes. We performed individual patient data meta-analysis (IPDMA) of CAR T-cell therapy in patients with hematologic malignancies to explore whether patient-level factors modify therapeutic efficacy/safety. We searched MEDLINE, Embase, and Cochrane CENTRAL for relevant trials. IPD was collected and pooled from each included trial, and prevalence of outcomes among strata of potential modifiers was explored. Our primary outcome was complete response, and the secondary outcomes were cytokine release syndrome (CRS), and immune effector cell associated neurotoxicity syndrome (ICANS). We identified 89 trials comprising 2,331 patients for the IPDMA. Complete response proportion ranged from 25% to 75% depending on cancer type. Decreased complete response was seen in those that received bridging therapy compared to those that did not (34% vs 58%, RR:0.55, 95% CI:0.30-0.98), as well as with autologous cell sources compared to allogeneic sources (53% vs 67%, RR:0.61, 95% CI:0.43-0.87). Compared to CAR T-cell therapies targeting CD19 alone, therapies that combine CD19 targeting with additional targets such as CD20, CD22, CD30, CD33, LeY, NKG2D, or BCMA were associated with higher complete response rates (72% vs 58%, RR:1.69, 95% CI:1.15-2.50). Autologous cell sources demonstrated increased risk of ICANS relative to allogeneic sources (24% vs 3%, RR:10.48, 95% CI:1.87-58.57). Safety and efficacy of CAR T-cell therapy within specific cancer types was also affected by modifiers including bridging therapy, CAR T-cell source, CAR T-cell target, sex, age, number of cell infusions, co-stimulatory domain, and dose.
Collapse
Affiliation(s)
- Manoj M Lalu
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | | | - Natasha Kekre
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Transplantation and Cell Therapy Program, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Matthew S Jeffers
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maryam Ghiasi
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kevin Hay
- Department of Medicine, University of British Columbia, Vancouver, Ontario, Canada
| | - Scott McComb
- National Research Council of Canada, Ottawa, Ontario, Canada
| | - Risini Weeratna
- National Research Council of Canada, Ottawa, Ontario, Canada
| | - Harold Atkins
- Transplantation and Cell Therapy Program, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Brian Hutton
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ayel Yahya
- Division of Medicine, Department of Hematology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashish Masurekar
- Division of Medicine, Department of Hematology, University of Ottawa, Ottawa, Ontario, Canada
| | - Philippe Giguere
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Transplantation and Cell Therapy Program, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Elham Sabri
- Ottawa Methods Centre, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Mohamad Sobh
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Sadowski K, Ploch W, Downar A, Giza W, Szcześ D, Olejarz W, Jędrzejczak WW, Małyszko J, Basak G. Nephrotoxicity in CAR-T cell therapy. Transplant Cell Ther 2025:S2666-6367(25)01095-4. [PMID: 40107382 DOI: 10.1016/j.jtct.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a novel therapy for the treatment of different hematologic malignancies. Besides its efficiency, CAR-T cell therapy is associated with significant toxicity, primarily manifested as cytokine release syndrome (CRS) and neurotoxicity. However, there are reports that CAR-T cell therapy is also nephrotoxic and this aspect has attracted less attention to date. In this review, we focus on the incidence and association between CAR-T cell therapy and kidney injury. Here, we describe risk factors, biomarkers, and potential reasons for acute kidney injury (AKI) and chronic kidney disease (CKD) related to CAR-T cell therapy to shed light on pathomechanisms leading to renal impairment as well as to the association of kidney failure with other side effects of CAR-T cell therapy. We also review the toxicity of different types of CAR-T cell products, the impact of nephrotoxicity on CAR-T cell therapy efficacy, and the safety of lymphodepletion in patients with baseline AKI or CKD.
Collapse
Affiliation(s)
- Karol Sadowski
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Weronika Ploch
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Downar
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Wiktoria Giza
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Szcześ
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Wiesław W Jędrzejczak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Dreyzin A, Shao L, Cai Y, Han KL, Prochazkova M, Gertz M, Yates B, Shi R, Martin K, Taylor N, Highfill S, O'Neill M, Andresson T, Stroncek D, Jin P, Shah NN. Immunophenotype of CAR T cells and apheresis products predicts response in CD22 CAR T cell trial for B cell acute lymphoblastic leukemia. Mol Ther 2025:S1525-0016(25)00193-5. [PMID: 40087865 DOI: 10.1016/j.ymthe.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025] Open
Abstract
Although CAR T cell therapy is increasingly used to treat relapsed B cell acute lymphoblastic leukemia (ALL), 20%-30% of patients do not respond, and few clinical predictors of response have been established, especially in the pediatric population. A deeper analysis of CAR T cell infusion products, along with the apheresis product used as the starting material for CAR T cell manufacturing, provides valuable insights for predicting clinical outcomes. We analyzed infusion products and CD4/8-selected T cell starting materials from pediatric and young adult patients on a single-center study with relapsed/refractory B cell ALL who were undergoing treatment with CD22 CAR T cells and evaluated differences between T cells from responders and non-responders (NCT023215612). We found that CAR T cells from non-responders had a more differentiated T cell phenotype and overexpressed genes associated with cytotoxicity and exhaustion compared with those of responders. Furthermore, we found that these differences could be tracked back to the apheresis materials prior to CAR T cell manufacturing. Using flow cytometry-based immunophenotypic markers, we developed a scoring system that distinguished non-responders based on T cell phenotype at the time of apheresis. These findings can help inform outcomes for patients and providers as well as provide insights into targeted manufacturing changes to optimize CAR T cell efficacy.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lipei Shao
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Yihua Cai
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Kyu Lee Han
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Michaela Prochazkova
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Michael Gertz
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bonnie Yates
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rongye Shi
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Kathryn Martin
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Highfill
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Maura O'Neill
- Center for Cancer Research Protein Characterization Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Center for Cancer Research Protein Characterization Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - David Stroncek
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Ping Jin
- Center for Cellular Engineering, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Pezzella M, Quintarelli C, Quadraccia MC, Sarcinelli A, Manni S, Iaffaldano L, Ottaviani A, Ciccone R, Camera A, D'Amore ML, Di Cecca S, Sinibaldi M, Guercio M, Aurigemma M, De Falco P, Fustaino V, Rota R, Pomella S, Cassandri M, Di Giannatale A, Agrati C, Bordoni V, Guarracino F, Massa M, Del Baldo G, Becilli M, Milano GM, Del Bufalo F, Locatelli F, De Angelis B. Tumor-derived G-CSF induces an immunosuppressive microenvironment in an osteosarcoma model, reducing response to CAR.GD2 T-cells. J Hematol Oncol 2024; 17:127. [PMID: 39695851 PMCID: PMC11656657 DOI: 10.1186/s13045-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Sarcomas are rare, mesenchymal tumors, representing about 10-15% of all childhood cancers. GD2 is a suitable target for chimeric antigen receptor (CAR) T-cell therapy due to its overexpression in several solid tumors. In this preclinical study, we investigated the potential use of iCasp9.2A.GD2.CAR-CD28.4-1BBζ (CAR.GD2) T-cells as a treatment option for patients who have GD2-positive sarcomas and we sought to identify factors shaping hostile tumor microenvironment in this setting. GD2 expression was evaluated by flow-cytometry on primary tumor biopsies of pediatric sarcoma patients. GD2 expression in sarcoma cells was also evaluated in response to an enhancer of zeste homolog 2 (EZH2) inhibitor (Tazemetostat). The antitumor activity of CAR.GD2 T-cells was evaluated both in vitro and in vivo preclinical models of orthotopic and/or metastatic soft-tissue and bone sarcomas. GD2 expression was detected in 55% of the primary tumors. Notably, the Osteosarcoma and Alveolar Rhabdomyosarcomas subtypes exhibited the highest GD2 expression levels, while Ewing sarcoma showed the lowest. CAR.GD2 T-cells show a significant tumor control both in vitro and in vivo models of GD2-expressing tumors. Pretreatment with an EZH2 inhibitor (Tazemetostat) upregulating GD2 expression, sensitizes GD2dim sarcoma cells to CAR.GD2 T-cells cytotoxic activity. Moreover, in mouse models of disseminated Rhabdomyosarcomas and orthotopic Osteosarcoma, CAR.GD2 T-cells showed both a vigorous anti-tumor activity and long-term persistence as compared to un-transduced T-cells. The presence of immunosuppressive murine myeloid-derived suppressor (MDSC) cells significantly reduces long-term anti-tumour activity of infused CAR.GD2 T-cells. Tumor-derived G-CSF was found to be one of the key factors driving expansion of immunosuppressive murine and human MDSC, thus indirectly limiting the efficacy of CAR.GD2 T-cells. Our preclinical data strongly suggest that CAR.GD2 T-cells hold promise as a potential therapeutic option for the treatment of patients with GD2-positive sarcomas. Strategies to tackle hostile immunosuppressive MDSC are desirable to optimize CAR.GD2 T-cell activity.
Collapse
Affiliation(s)
- Michele Pezzella
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
| | - Maria C Quadraccia
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00185, Rome, Italy
| | - Andrea Sarcinelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnologies, Faculty of Medicine, University of Rome Tor Vergata, 00173, Rome, Italy
| | - Simona Manni
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Laura Iaffaldano
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Alessio Ottaviani
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Roselia Ciccone
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Antonio Camera
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Maria L D'Amore
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Stefano Di Cecca
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Matilde Sinibaldi
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Marika Guercio
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Mariasole Aurigemma
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00185, Rome, Italy
| | - Pamela De Falco
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Valentina Fustaino
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Rossella Rota
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Matteo Cassandri
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Angela Di Giannatale
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Chiara Agrati
- Unit of Pathogen Specific Immunity, Bambino Gesù Children's Hospital, IRCCS, 00145, Rome, Italy
| | - Veronica Bordoni
- Unit of Pathogen Specific Immunity, Bambino Gesù Children's Hospital, IRCCS, 00145, Rome, Italy
| | - Federica Guarracino
- Unit of Pathogen Specific Immunity, Bambino Gesù Children's Hospital, IRCCS, 00145, Rome, Italy
| | - Michele Massa
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Marco Becilli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Giuseppe M Milano
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Francesca Del Bufalo
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy.
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, S. Onofrio Square, 00165, Rome, Italy.
| | - Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy.
| |
Collapse
|
8
|
Kearl TJ, Furqan F, Shah NN. CAR T-cell therapy for B-cell lymphomas: outcomes and resistance mechanisms. Cancer Metastasis Rev 2024; 44:12. [PMID: 39617795 DOI: 10.1007/s10555-024-10228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are an exciting curative intent approach to the treatment of non-Hodgkin lymphomas (NHLs). Several products have received FDA approval for 2nd or 3rd line indications, and studies are underway for their use earlier in the disease course. These CAR T cells are ex vivo manufactured autologous cell products that specifically target tumor antigens to optimize tumor specificity and minimize off-tumor side effects-in NHLs, this is typically achieved by targeting B-cell antigens. Engagement of the CAR and corresponding antigen is designed to result in T-cell activation and subsequent tumor clearance. While curative for many NHL patients, too many patients fail to respond to or relapse following CAR T-cell treatment, and salvage options post CAR T-cell therapy are limited. Treatment failures occur because of myriad resistance mechanisms including CAR T-cell dysfunction, generalized immune dysregulation, and intrinsic tumor resistance. Focusing on patients with NHL, we review the clinical outcomes of CAR T-cell therapy and the major resistance mechanisms that lead to poor outcomes. We also review the many innovative and encouraging strategies that are being developed to improve CAR T-cell therapy for NHL.
Collapse
Affiliation(s)
- Tyce J Kearl
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fateeha Furqan
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nirav N Shah
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Willyanto SE, Alimsjah YA, Tanjaya K, Tuekprakhon A, Pawestri AR. Comprehensive analysis of the efficacy and safety of CAR T-cell therapy in patients with relapsed or refractory B-cell acute lymphoblastic leukaemia: a systematic review and meta-analysis. Ann Med 2024; 56:2349796. [PMID: 38738799 PMCID: PMC11095278 DOI: 10.1080/07853890.2024.2349796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Relapse/refractory B-cell acute lymphoblastic leukaemia (r/r B-ALL) represents paediatric cancer with a challenging prognosis. CAR T-cell treatment, considered an advanced treatment, remains controversial due to high relapse rates and adverse events. This study assessed the efficacy and safety of CAR T-cell therapy for r/r B-ALL. METHODS The literature search was performed on four databases. Efficacy parameters included minimal residual disease negative complete remission (MRD-CR) and relapse rate (RR). Safety parameters constituted cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). RESULTS Anti-CD22 showed superior efficacy with the highest MRD-CR event rate and lowest RR, compared to anti-CD19. Combining CAR T-cell therapy with haploidentical stem cell transplantation improved RR. Safety-wise, bispecific anti-CD19/22 had the lowest CRS rate, and anti-CD22 showed the fewest ICANS. Analysis of the costimulatory receptors showed that adding CD28ζ to anti-CD19 CAR T-cell demonstrated superior efficacy in reducing relapses with favorable safety profiles. CONCLUSION Choosing a more efficacious and safer CAR T-cell treatment is crucial for improving overall survival in acute leukaemia. Beyond the promising anti-CD22 CAR T-cell, exploring costimulatory domains and new CD targets could enhance treatment effectiveness for r/r B-ALL.
Collapse
Affiliation(s)
| | - Yohanes Audric Alimsjah
- Bachelor Study Program of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Krisanto Tanjaya
- Bachelor Study Program of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Aekkachai Tuekprakhon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Aulia Rahmi Pawestri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
10
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Elmarasi M, Elkonaissi I, Elsabagh AA, Elsayed E, Elsayed A, Elsayed B, Elmakaty I, Yassin M. CAR-T cell therapy: Efficacy in management of cancers, adverse effects, dose-limiting toxicities and long-term follow up. Int Immunopharmacol 2024; 135:112312. [PMID: 38788449 DOI: 10.1016/j.intimp.2024.112312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Chimeric Antigen Receptor T-cell (CAR-T) therapy has emerged as a groundbreaking and highly promising approach for the management of cancer. This paper reviews the efficacy of CAR-T therapy in the treatment of various hematological malignancies, also, with a mention of its effect on solid tumors, for which they have not received FDA approval yet. Different common and uncommon side effects are also discussed in this paper, with attention to the effect of each drug separately. By reviewing the recommendations of the FDA for CAR-T therapy research, we have extensively discussed dose-limiting toxicities. This further highlights the need for precise dosing strategies, striking a balance between therapeutic benefits and potential risks. Additionally, we reviewed the long-term follow-up of patients receiving CAR-T therapy to gain valuable insights into response durability and late-onset effects.
Collapse
Affiliation(s)
- Mohamed Elmarasi
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Islam Elkonaissi
- Department of Hematology, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Ahmed Adel Elsabagh
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Engy Elsayed
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Abdelrahman Elsayed
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Basant Elsayed
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ibrahim Elmakaty
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mohamed Yassin
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Hematology Section, Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), P.O. Box 3050, Doha, Qatar.
| |
Collapse
|
12
|
Pang Y, Ghosh N. Novel and multiple targets for chimeric antigen receptor-based therapies in lymphoma. Front Oncol 2024; 14:1396395. [PMID: 38711850 PMCID: PMC11070555 DOI: 10.3389/fonc.2024.1396395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 in B-cell non-Hodgkin lymphoma (NHL) validates the utility of CAR-based therapy for lymphomatous malignancies. Despite the success, treatment failure due to CD19 antigen loss, mutation, or down-regulation remains the main obstacle to cure. On-target, off-tumor effect of CD19-CAR T leads to side effects such as prolonged B-cell aplasia, limiting the application of therapy in indolent diseases such as chronic lymphocytic leukemia (CLL). Alternative CAR targets and multi-specific CAR are potential solutions to improving cellular therapy outcomes in B-NHL. For Hodgkin lymphoma and T-cell lymphoma, several cell surface antigens have been studied as CAR targets, some of which already showed promising results in clinical trials. Some antigens are expressed by different lymphomas and could be used for designing tumor-agnostic CAR. Here, we reviewed the antigens that have been studied for novel CAR-based therapies, as well as CARs designed to target two or more antigens in the treatment of lymphoma.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Wake Forest School of Medicine, Charlotte, NC, United States
| | | |
Collapse
|
13
|
Saunthararajah Y. Oncotherapy resistance explained by Darwinian and Lamarckian models. J Clin Invest 2024; 134:e179788. [PMID: 38618954 PMCID: PMC11014649 DOI: 10.1172/jci179788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Cell and antibody therapies directed against surface molecules on B cells, e.g., CD19-targeting chimeric antigen receptor T cells (CD19 CAR-T), are now standard for patients with chemorefractory B cell acute lymphoblastic leukemias and other B cell malignancies. However, early relapse rates remain high. In this issue of the JCI, Aminov, Giricz, and colleagues revealed that leukemia cells resisting CD19-targeted therapy had reduced CD19 but also low CD22 expression and were sensitive to Bruton's tyrosine kinase and/or MEK inhibition. Overall, their observations support the evolution of resistance following a Lamarckian model: the oncotherapy directly elicits adaptive, resistance-conferring reconfigurations, which are then inherited by daughter cells as epigenetic changes. The findings prompt reflection also on the broader role of epigenetics in decoupling of replication from lineage differentiation activation by the B cell lineage master transcription factor hub. Such oncogenesis and resistance mechanisms, being predictable and epigenetic, offer practical opportunities for intervention, potentially non-cross-resistant and safe vis-à-vis present cytotoxic and CAR-T treatments.
Collapse
|
14
|
Song KW, Scott BJ, Lee EQ. Neurotoxicity of Cancer Immunotherapies Including CAR T Cell Therapy. Curr Neurol Neurosci Rep 2023; 23:827-839. [PMID: 37938472 DOI: 10.1007/s11910-023-01315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE OF REVIEW To outline the spectrum of neurotoxicity seen with approved immunotherapies and in pivotal clinical trials including immune checkpoint inhibitors, chimeric antigen receptor T-cell therapy, vaccine therapy, and oncolytic viruses. RECENT FINDINGS There has been an exponential growth in new immunotherapies, which has transformed the landscape of oncology treatment. With more widespread use of cancer immunotherapies, there have also been advances in characterization of its associated neurotoxicity, research into potential underlying mechanisms, and development of management guidelines. Increasingly, there is also mounting interest in long-term neurologic sequelae. Neurologic complications of immunotherapy can impact every aspect of the central and peripheral nervous system. Early recognition and treatment are critical. Expanding indications for immunotherapy to solid and CNS tumors has led to new challenges, such as how to reliably distinguish neurotoxicity from disease progression. Our evolving understanding of immunotherapy neurotoxicity highlights important areas for future research and the need for novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Kun-Wei Song
- Department of Neurology, Stanford University School of Medicine, 453 Quarry Rd, 2nd Floor, Stanford, CA, 94305, USA.
| | - Brian J Scott
- Department of Neurology, Stanford University School of Medicine, 453 Quarry Rd, 2nd Floor, Stanford, CA, 94305, USA
| | - Eudocia Q Lee
- Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
15
|
Fugere T, Baltz A, Mukherjee A, Gaddam M, Varma A, Veeraputhiran M, Gentille Sanchez CG. Immune Effector Cell-Associated HLH-like Syndrome: A Review of the Literature of an Increasingly Recognized Entity. Cancers (Basel) 2023; 15:5149. [PMID: 37958323 PMCID: PMC10647774 DOI: 10.3390/cancers15215149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Since CAR-T cell therapy was initially approved in 2017, its use has become more prevalent and so have its side effects. CAR-T-related HLH, also named immune effector cell-associated HLH-like syndrome (IEC-HS), is a rare but fatal toxicity if not recognized promptly. We conducted a review of the literature in order to understand the prevalence of IEC-HS as well as clarify the evolution of the diagnostic criteria and treatment recommendations. IEC-HS occurrence varies between CAR-T cell products and the type of malignancy treated. Diagnosis can be challenging as there are no standardized diagnostic criteria, and its clinical features can overlap with cytokine release syndrome and active hematological disease. Suggested treatment strategies have been extrapolated from prior experience in HLH and include anakinra, corticosteroids and ruxolitinib. IEC-HS is a potentially fatal toxicity associated with CAR-T cell therapy. Early recognition with reliable diagnostic criteria and prompt implementation of treatment specific to IEC-HS is imperative for improving patient outcomes.
Collapse
Affiliation(s)
- Tyler Fugere
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.B.); (A.M.); (M.G.); (A.V.); (M.V.); (C.G.G.S.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Almaeen AH, Abouelkheir M. CAR T-Cells in Acute Lymphoblastic Leukemia: Current Status and Future Prospects. Biomedicines 2023; 11:2693. [PMID: 37893067 PMCID: PMC10604728 DOI: 10.3390/biomedicines11102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The currently available treatment for acute lymphoblastic leukemia (ALL) is mainly dependent on the combination of chemotherapy, steroids, and allogeneic stem cell transplantation. However, refractoriness and relapse (R/R) after initial complete remission may reach up to 20% in pediatrics. This percentage may even reach 60% in adults. To overcome R/R, a new therapeutic approach was developed using what is called chimeric antigen receptor-modified (CAR) T-cell therapy. The Food and Drug Administration (FDA) in the United States has so far approved four CAR T-cells for the treatment of ALL. Using this new therapeutic strategy has shown a remarkable success in treating R/R ALL. However, the use of CAR T-cells is expensive, has many imitations, and is associated with some adverse effects. Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are two common examples of these adverse effects. Moreover, R/R to CAR T-cell therapy can take place during treatment. Continuous development of this therapeutic strategy is ongoing to overcome these limitations and adverse effects. The present article overviews the use of CAR T-cell in the treatment of ALL, summarizing the results of relevant clinical trials and discussing future prospects intended to improve the efficacy of this therapeutic strategy and overcome its limitations.
Collapse
Affiliation(s)
- Abdulrahman H. Almaeen
- Department of Pathology, Pathology Division, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
17
|
Benoit A, Vogin G, Duhem C, Berchem G, Janji B. Lighting Up the Fire in the Microenvironment of Cold Tumors: A Major Challenge to Improve Cancer Immunotherapy. Cells 2023; 12:1787. [PMID: 37443821 PMCID: PMC10341162 DOI: 10.3390/cells12131787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Immunotherapy includes immune checkpoint inhibitors (ICI) such as antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death protein/programmed death ligand 1 (PD-1/PD-L1) axis. Experimental and clinical evidence show that immunotherapy based on immune checkpoint inhibitors (ICI) provides long-term survival benefits to cancer patients in whom other conventional therapies have failed. However, only a minority of patients show high clinical benefits via the use of ICI alone. One of the major factors limiting the clinical benefits to ICI can be attributed to the lack of immune cell infiltration within the tumor microenvironment. Such tumors are classified as "cold/warm" or an immune "desert"; those displaying significant infiltration are considered "hot" or inflamed. This review will provide a brief summary of different tumor properties contributing to the establishment of cold tumors and describe major strategies that could reprogram non-inflamed cold tumors into inflamed hot tumors. More particularly, we will describe how targeting hypoxia can induce metabolic reprogramming that results in improving and extending the benefit of ICI.
Collapse
Affiliation(s)
- Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
| | - Guillaume Vogin
- Centre National de Radiothérapie François Baclesse, L-4005 Esch-sur-Alzette, Luxembourg;
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine—UMR 7365, 54505 Vandoeuvre-lès-Nancy, France
| | - Caroline Duhem
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, L-1210 Luxembourg, Luxembourg;
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, L-1210 Luxembourg, Luxembourg;
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
| |
Collapse
|