1
|
Wang X, He J, Zhang Q, He J, Wang Q. Constructing a 3D co-culture in vitro synovial tissue model for rheumatoid arthritis research. Mater Today Bio 2025; 31:101492. [PMID: 39968522 PMCID: PMC11834117 DOI: 10.1016/j.mtbio.2025.101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/25/2024] [Accepted: 01/12/2025] [Indexed: 02/20/2025] Open
Abstract
The development and exploration of highly effective drugs for rheumatoid arthritis remains an urgent necessity. However, current disease research models are no longer sufficient to meet the rapid development of high-throughput drug screening. In this study, bacterial cellulose simulating the structure of extracellular matrix was used as a 3D culture platform, and THP-1-derived M1 macrophages, representing the inflammatory component, human umbilical vein endothelial cells (HUVECs), simulating the vascular component, and rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs), embodying the synovial pathology, were co-cultured to simulate the pathological microenvironment in RA synovial tissues, and synovial organoids were constructed. Under three-dimensional (3D) culture conditions, there was a notable upregulation of fatty acid-binding protein 4 (FABP4) in polarized macrophages, and an enhancement of pathological phenotypes in HUVECs and RA-FLSs, mediated through the PI3K/AKT signaling pathway, including cell proliferation, migration, invasion and vascularization. Compared to planar cultures and 2D co-cultures, 3D synovial organoids not only exhibit a broader range of transcriptomic features characteristic of rheumatoid arthritis but also demonstrate increased drug resistance, likely due to the more complex and physiologically relevant cell-cell and cell-matrix interactions present in 3D environments. This model offers a promising path for personalized treatment, accelerating precision medicine in rheumatology.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, 518036, China
| | - Jiaxin He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, 518036, China
| | - Qiang Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, 518036, China
| | - Juan He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, 518036, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, 518036, China
| |
Collapse
|
2
|
Khodadust F, Philippon EML, Steinz MM, van Hamburg JP, van Meerloo J, van Beijnum JR, Jansen G, Tas SW, van der Laken CJ. Unveiling the Anti-Angiogenic Potential of Small-Molecule (Kinase) Inhibitors for Application in Rheumatoid Arthritis. Cells 2025; 14:102. [PMID: 39851530 PMCID: PMC11764070 DOI: 10.3390/cells14020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation leading to joint damage and systemic complications. Angiogenesis promotes inflammation and contributes to RA progression. This study evaluated potential anti-angiogenic effects of several compounds including small-molecule kinase inhibitors, such as sunitinib (pan-kinase inhibitor), tofacitinib (JAK-inhibitor), NIKi (NF-κB-inducing kinase inhibitor), and the integrin-targeting peptide fluciclatide, using a scratch assay and 3D spheroid-based models of angiogenesis. For all drugs tested in the low micromolar range (1-25 μM), sunitinib (as positive anti-angiogenetic control) showed marked inhibition of endothelial cell (EC) migration and sprouting, effectively reducing both scratch closure and sprout formation. Tofacitinib exhibited marginal effectiveness in the scratch assay, but performed better in the 3D models (55% inhibition), whereas NIKi showed around 50% anti-angiogenic effects in both models. Fluciclatide changed EC morphology rather than migration, and only when stimulated with synovial fluid in spheroid model did it show inhibitory effects (at ≥2.5 µM), with none below this dosage. These results highlight the potential of NIKi and tofacitinib for angiogenesis inhibition and of fluciclatide for safe diagnostic targeting of microdose in RA, as well as the need for advanced screening models that mimic RA's complex inflammatory pro-angiogenic environment.
Collapse
Affiliation(s)
- Fatemeh Khodadust
- Department of Rheumatology & Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (F.K.); (S.W.T.)
| | - Eva M. L. Philippon
- Department of Rheumatology & Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (F.K.); (S.W.T.)
- Department of Experimental Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten M. Steinz
- Department of Rheumatology & Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (F.K.); (S.W.T.)
| | - Jan Piet van Hamburg
- Department of Rheumatology & Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (F.K.); (S.W.T.)
- Department of Experimental Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johan van Meerloo
- Department of Hematology, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Judy R. van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology & Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (F.K.); (S.W.T.)
| | - Sander W. Tas
- Department of Rheumatology & Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (F.K.); (S.W.T.)
- Department of Experimental Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Conny J. van der Laken
- Department of Rheumatology & Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (F.K.); (S.W.T.)
| |
Collapse
|
3
|
Anjiki K, Hayashi S, Ikuta K, Suda Y, Kamenaga T, Tsubosaka M, Kuroda Y, Nkano N, Maeda T, Tsumiyama K, Matsumoto T, Kuroda R, Matsubara T. JAK inhibitors inhibit angiogenesis by reducing VEGF production from rheumatoid arthritis-derived fibroblast-like synoviocytes. Clin Rheumatol 2024; 43:3525-3536. [PMID: 39302595 DOI: 10.1007/s10067-024-07142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION/OBJECTIVES JAK/STAT signaling inhibition exerts therapeutic effects on angiogenesis in rheumatoid arthritis (RA). However, whether the inhibitory effect differs among JAK inhibitors because of differing selectivity is unknown. Therefore, we compared the inhibitory effects of tofacitinib, baricitinib, peficitinib, upadacitinib, and filgotinib on angiogenesis. METHOD RA-derived fibroblast-like synoviocytes (RA-FLS) were seeded on type I collagen gel, and human umbilical vein endothelial cells (HUVECs) were directly added. The control and aforementioned JAK inhibitors were added to the medium, followed by stimulation with interleukin (IL)-6 and soluble IL-6 receptor (sIL-6R). Each JAK inhibitor's concentration was determined based on estimated blood concentrations. The vascular endothelial growth factor (VEGF) concentration was evaluated with an enzyme-linked immunosorbent assay using the medium from the first exchange. A migration assay was performed, and HUVEC migration was evaluated using CD31 fluorescence immunostaining. RESULTS Hematoxylin-eosin staining showed that compared with the non-JAKi treatment group, the JAKi treatment group markedly degenerated in the sub-lining and deep lining, with decreased lymphocyte infiltration and neovascularization [Rooney's score subscale, non-JAKi vs JAKi (median, 6.5 vs 2.5, p = 0.005)]. In vitro, IL-6 and sIL-6R administration increased VEGF production from RA-FLS and promoted neovascularization in HUVECs, and JAK-inhibitor administration, which decreased VEGF production from RA-FLS and suppressed HUVEC migration, inhibited neovascularization in RA-FLS and HUVEC co-cultures. CONCLUSIONS The JAK inhibitors suppressed IL-6-induced angiogenesis via decreased VEGF production and HUVEC migration in RA-FLS and HUVEC co-cultures. No significant differences were observed among the JAK inhibitors, whose anti-angiogenic effect may be an important mechanism for RA treatment. Key Points • JAK inhibitors inhibit angiogenesis in RA by reducing VEGF production from RA-derived fibroblast-like synoviocytes. • Our study provides new insights into RA treatment by elucidating the anti-angiogenic effect of JAK inhibitors.
Collapse
Affiliation(s)
- Kensuke Anjiki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan.
| | - Kenmei Ikuta
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoshihito Suda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyui Kamenaga
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Naoki Nkano
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Toshihisa Maeda
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| | - Ken Tsumiyama
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tsukasa Matsubara
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| |
Collapse
|
4
|
Zhu J, Lin Y, Li G, He Y, Su Z, Tang Y, Zhang Y, Xu Q, Yao Z, Zhou H, Liu B, Cai X. Dual-targeted halofuginone hydrobromide nanocomplexes for promotion of macrophage repolarization and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes in adjuvant-induced arthritis in rats. J Pharm Anal 2024; 14:100981. [PMID: 39703571 PMCID: PMC11656085 DOI: 10.1016/j.jpha.2024.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 12/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by chronic inflammation and excessive proliferation of the synovium. Currently, treatment options focus on either reducing inflammation or inhibiting synovial hyperplasia. However, these modalities are unsatisfactory in achieving the desired therapeutic outcomes. Halofuginone hydrobromide (HF), an herbal active ingredient, has demonstrated pharmacological effects of both anti-inflammation and inhibition of synovial hyperplasia proliferation. However, HF's medical efficacy is limited due to its poor water solubility, short half-life (t 1/2), and non-target toxicity. In the current study, by using the advantages of nanotechnology, we presented a novel dual-targeted nanocomplex, termed HA-M@P@HF NPs, which consisted of a hyaluronic acid (HA)-modified hybrid membrane (M)-camouflaged poly lactic-co-glycolic acid (PLGA) nanosystem for HF delivery. These nanocomplexes not only overcame the limitations of HF but also achieved simultaneous targeting of inflammatory macrophages and human fibroblast-like synoviocytes-RA (HFLS-RA). In vivo experiments demonstrated that these nanocomplexes effectively suppressed immune-mediated inflammation and synovial hyperplasia, safeguarding against bone destruction in rats with adjuvant-induced arthritis (AIA). Remarkable anti-arthritic effects of these nanocomplexes were accomplished through promoting repolarization of M1-to-M2 macrophages and apoptosis of HFLS-RA, thereby offering a promising therapeutic strategy for RA.
Collapse
Affiliation(s)
- Junping Zhu
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhaoli Su
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ye Zhang
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qian Xu
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhongliu Yao
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
5
|
Mishra A, Kumar R, Harilal S, Nigam M, Datta D, Singh S. Emerging Landscape of In Vitro Models for Assessing Rheumatoid Arthritis Management. ACS Pharmacol Transl Sci 2024; 7:2280-2305. [PMID: 39144547 PMCID: PMC11320735 DOI: 10.1021/acsptsci.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
Rheumatoid arthritis (RA) is a complex condition that is influenced by various causes, including immunological, genetic, and environmental factors. Several studies using animal models have documented immune system dysfunction and described the clinical characteristics of the disease. These studies have provided valuable insights into the pathogenesis of inflammatory arthritis and the identification of new targets for treatment. Nevertheless, none of these animal models successfully replicated all the characteristics of RA. Additionally, numerous experimental medications, which were developed based on our enhanced comprehension of the immune system's function in RA, have shown potential in animal research but ultimately proved ineffective during different stages of clinical trials. There have been several novel therapy alternatives, which do not achieve a consistently outstanding therapeutic outcome in all patients. This underscores the importance of employing the progress in in vitro models, particularly 3D models like tissue explants, and diverse multicomponent approaches such as coculture strategies, synovial membrane, articular cartilage, and subchondral bone models that accurately replicate the structural characteristics of RA pathophysiology. These methods are crucial for the advancement of potential therapeutic strategies. This review discusses the latest advancements in in vitro models and their potential to greatly impact research on managing RA.
Collapse
Affiliation(s)
- Abhay
Prakash Mishra
- Department
of Pharmacology, University of Free State, Bloemfontein 9301, South Africa
- Department
of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Rajesh Kumar
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Seetha Harilal
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Manisha Nigam
- Department
of Biochemistry, Hemvati Nandan Bahuguna
Garhwal University, Srinagar
Garhwal, Uttarakhand 246174, India
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Singh
- Office of
Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of
Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Liang Z, Han Y, Chen T, Wang J, Lin K, Yuan L, Li X, Xu H, Wang T, Liu Y, Xiao L, Liang Q. Application of 3D bioprinting technology apply to assessing Dangguiniantongtang (DGNT) decoctions in arthritis. Chin Med 2024; 19:96. [PMID: 38978120 PMCID: PMC11229348 DOI: 10.1186/s13020-024-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/19/2024] [Indexed: 07/10/2024] Open
Abstract
The aim of this study was to develop a three-dimensional (3D) cell model in order to evaluate the effectiveness of a traditional Chinese medicine decoction in the treatment of arthritis. Chondrocytes (ATDC5) and osteoblasts (MC3T3-E1) were 3D printed separately using methacryloyl gelatin (GelMA) hydrogel bioinks to mimic the natural 3D cell environment. Both cell types showed good biocompatibility in GelMA. Lipopolysaccharide (LPS) was added to the cell models to create inflammation models, which resulted in increased expression of inflammatory factors IL-1β, TNF-α, iNOS, and IL-6, and decreased expression of cell functional genes such as Collagen II (COLII), transcription factor SOX-9 (Sox9), Aggrecan, alkaline phosphatase (ALP), RUNX family transcription factor 2 (Runx2), Collagen I (COLI), Osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2). The created inflammation model was then used to evaluate the effectiveness of Dangguiniantongtang (DGNT) decoctions. The results showed that DGNT reduced the expression of inflammatory factors and increased the expression of functional genes in the cell model. In summary, this study established a 3D cell model to assess the effectiveness of traditional Chinese medicine (TCM) decoctions, characterized the gene expression profile of the inflammatory state model, and provided a practical reference for future research on TCM efficacy evaluation for arthritis treatment.
Collapse
Affiliation(s)
- Zhichao Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai, 200052, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Yunxi Han
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 1200 Cailun Road, Shanghai, 201203, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 1200 Cailun Road, Shanghai, 201203, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Luying Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Xuefei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Tengteng Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| | - Lianbo Xiao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai, 200052, China.
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai, 200052, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
7
|
Ali M, Benfante V, Di Raimondo D, Laudicella R, Tuttolomondo A, Comelli A. A Review of Advances in Molecular Imaging of Rheumatoid Arthritis: From In Vitro to Clinic Applications Using Radiolabeled Targeting Vectors with Technetium-99m. Life (Basel) 2024; 14:751. [PMID: 38929734 PMCID: PMC11204982 DOI: 10.3390/life14060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder caused by inflammation of cartilaginous diarthrodial joints that destroys joints and cartilage, resulting in synovitis and pannus formation. Timely detection and effective management of RA are pivotal for mitigating inflammatory arthritis consequences, potentially influencing disease progression. Nuclear medicine using radiolabeled targeted vectors presents a promising avenue for RA diagnosis and response to treatment assessment. Radiopharmaceutical such as technetium-99m (99mTc), combined with single photon emission computed tomography (SPECT) combined with CT (SPECT/CT), introduces a more refined diagnostic approach, enhancing accuracy through precise anatomical localization, representing a notable advancement in hybrid molecular imaging for RA evaluation. This comprehensive review discusses existing research, encompassing in vitro, in vivo, and clinical studies to explore the application of 99mTc radiolabeled targeting vectors with SPECT imaging for RA diagnosis. The purpose of this review is to highlight the potential of this strategy to enhance patient outcomes by improving the early detection and management of RA.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Messina University, 98124 Messina, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
8
|
Kalliolias GD, Basdra EK, Papavassiliou AG. How to improve translatability and clinical relevance of preclinical studies in rheumatoid arthritis. Immunology 2024; 171:440-443. [PMID: 38148686 DOI: 10.1111/imm.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- George D Kalliolias
- Arthritis & Tissue Degeneration, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|