1
|
Zou YX, Xiang TN, Xu LR, Zhang H, Ma YH, Zhang L, Zhou CX, Wu X, Huang QL, Lei B, Mu JW, Qin XY, Jiang X, Zheng YJ. Dehydrozaluzanin C- derivative protects septic mice by alleviating over-activated inflammatory response and promoting the phagocytosis of macrophages. Int Immunopharmacol 2024; 132:111889. [PMID: 38531202 DOI: 10.1016/j.intimp.2024.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Host-directed therapy (HDT) is a new adjuvant strategy that interfere with host cell factors that are required by a pathogen for replication or persistence. In this study, we assessed the effect of dehydrozaluzanin C-derivative (DHZD), a modified compound from dehydrozaluzanin C (DHZC), as a potential HDT agent for severe infection. LPS-induced septic mouse model and Carbapenem resistant Klebsiella pneumoniae (CRKP) infection mouse model was used for testing in vivo. RAW264.7 cells, mouse primary macrophages, and DCs were used for in vitro experiments. Dexamethasone (DXM) was used as a positive control agent. DHZD ameliorated tissue damage (lung, kidney, and liver) and excessive inflammatory response induced by LPS or CRKP infection in mice. Also, DHZD improved the hypothermic symptoms of acute peritonitis induced by CRKP, inhibited heat-killed CRKP (HK-CRKP)-induced inflammatory response in macrophages, and upregulated the proportions of phagocytic cell types in lungs. In vitro data suggested that DHZD decreases LPS-stimulated expression of IL-6, TNF-α and MCP-1 via PI3K/Akt/p70S6K signaling pathway in macrophages. Interestingly, the combined treatment group of DXM and DHZD had a higher survival rate and lower level of IL-6 than those of the DXM-treated group; the combination of DHZD and DXM played a synergistic role in decreasing IL-6 secretion in sera. Moreover, the phagocytic receptor CD36 was increased by DHZD in macrophages, which was accompanied by increased bacterial phagocytosis in a clathrin- and actin-dependent manner. This data suggests that DHZD may be a potential drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Ying-Xiang Zou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Nan Xiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Chinese Medicine, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434020, China
| | - Li-Rong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huan Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-He Ma
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lu Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chun-Xian Zhou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi-Lin Huang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Biao Lei
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing-Wen Mu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiang-Yang Qin
- Department of Chemistry, school of pharmacy, Fourth Military University, Xi'an, Shaanxi 710032, China.
| | - Xin Jiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue-Juan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Clayton SA, Lockwood C, O’Neil JD, Daley KK, Hain S, Abdelmottaleb D, Bolimowska OO, Tennant DA, Clark AR. The glucocorticoid dexamethasone inhibits HIF-1α stabilization and metabolic reprogramming in lipopolysaccharide-stimulated primary macrophages. DISCOVERY IMMUNOLOGY 2023; 2:kyad027. [PMID: 38567068 PMCID: PMC10917182 DOI: 10.1093/discim/kyad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 04/04/2024]
Abstract
Synthetic glucocorticoids are used to treat many chronic and acute inflammatory conditions. Frequent adverse effects of prolonged exposure to glucocorticoids include disturbances of glucose homeostasis caused by changes in glucose traffic and metabolism in muscle, liver, and adipose tissues. Macrophages are important targets for the anti-inflammatory actions of glucocorticoids. These cells rely on aerobic glycolysis to support various pro-inflammatory and antimicrobial functions. Employing a potent pro-inflammatory stimulus in two commonly used model systems (mouse bone marrow-derived and human monocyte-derived macrophages), we showed that the synthetic glucocorticoid dexamethasone inhibited lipopolysaccharide-mediated activation of the hypoxia-inducible transcription factor HIF-1α, a critical driver of glycolysis. In both cell types, dexamethasone-mediated inhibition of HIF-1α reduced the expression of the glucose transporter GLUT1, which imports glucose to fuel aerobic glycolysis. Aside from this conserved response, other metabolic effects of lipopolysaccharide and dexamethasone differed between human and mouse macrophages. These findings suggest that glucocorticoids exert anti-inflammatory effects by impairing HIF-1α-dependent glucose uptake in activated macrophages. Furthermore, harmful and beneficial (anti-inflammatory) effects of glucocorticoids may have a shared mechanistic basis, depending on the alteration of glucose utilization.
Collapse
Affiliation(s)
- Sally A Clayton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Chloe Lockwood
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - John D O’Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Kalbinder K Daley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Sofia Hain
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Dina Abdelmottaleb
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Oliwia O Bolimowska
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Andrew R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|