1
|
Yang J, Xu C, Xie X, Wang J, Shi P. Roles of Piezo1 in chronic inflammatory diseases and prospects for drug treatment (Review). Mol Med Rep 2025; 32:200. [PMID: 40376999 PMCID: PMC12105466 DOI: 10.3892/mmr.2025.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/24/2025] [Indexed: 05/18/2025] Open
Abstract
The human body is chronically stimulated by various mechanical forces and the body cells can sense harmful stimuli through mechanotransduction to induce chronic inflammation. Piezo type mechanosensitive ion channel component 1 (Piezo1), a novel transmembrane mechanosensitive cation channel, is widely expressed in inflammatory cells, such as neutrophils, macrophages and endothelial cells, as well as in non‑inflammatory cells, such as osteoblasts, osteoclasts and periodontal cells. A growing number of studies have demonstrated that Piezo1 senses changes in environmental mechanical forces, regulates cellular functions and influences the development and regression of chronic inflammation. The present study summarized the roles of Piezo1 and its possible mechanisms in some common chronic inflammatory diseases and evaluated the potential application of drugs that modulate its activity, so as to prove that Piezo1 is likely to become a new target for the treatment of inflammatory diseases.15.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Peilei Shi
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Schröder A, Engelhardt H, Nogueira A, Clausen B, Kirschneck C, Jantsch J, Proff P, Renner K, Paddenberg-Schubert E. The Mechanosensitive PIEZO1 Channel Contributes to the Reaction of RAW264.7 Macrophages to Mechanical Strain. Mediators Inflamm 2025; 2025:9998838. [PMID: 40420945 PMCID: PMC12103965 DOI: 10.1155/mi/9998838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
The mechanosensitive channel 'piezo type mechanosensitive ion channel component 1' (PIEZO1) plays a regulatory role in the response of periodontal ligament fibroblasts (PDLFs) to the mechanical strain that occurs during orthodontic tooth movement. In addition to PDLFs, immune cells such as macrophages are also exposed to mechanical stimuli. Macrophages respond to mechanical strain with increased expression of inflammatory mediators. The role of PIEZO1 in this response remains elusive. To investigate the effect of PIEZO1 activation, RAW264.7 macrophages were stimulated with the PIEZO1 activator YODA1 without concurrent application of pressure. To further examine the specific role of PIEZO1 during mechanical strain, RAW264.7 macrophages were exposed to mechanical strain without and with simultaneous inhibition of PIEZO1 either by chemical inhibition (GsMTx4) or siRNA silencing. The expression of genes and proteins involved in orthodontic tooth movement was examined by quantitative PCR, western blot, and enzyme-linked immunosorbent assay (ELISA). Activation of PIEZO1 by YODA1 or mechanical strain increased the expression of inflammatory cytokines and osteoprotegerin (Opg), which is critically involved in bone remodeling processes. Conversely, inhibition of the PIEZO1 channel attenuates the effects of mechanical stress. In conclusion, our data demonstrate that the PIEZO1 channel is a major contributor to the response of macrophages to mechanical strain encountered during orthodontic tooth movement and affects the expression of inflammatory and bone remodeling factors.
Collapse
Affiliation(s)
- Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
- Institute for Medical Microbiology and Hygiene, University Regensburg, Regensburg, Germany
| | - Hanna Engelhardt
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Andressa Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Mainz, Germany
| | - Björn Clausen
- Institute for Molecular Medicine, University Medical Center Mainz, Mainz, Germany
| | | | - Jonathan Jantsch
- Institute for Medical Microbiology and Hygiene, University Regensburg, Regensburg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | | |
Collapse
|
3
|
Lai J, Wu Q, Gao B, Cai W, Wang Y. Piezo Channels in Dentistry: Decoding the Functional Effects of Forces. J Dent Res 2025:220345251329376. [PMID: 40353513 DOI: 10.1177/00220345251329376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
The oral system is a highly complex mechanosensory structure that continuously adapts to changes in mechanical stimuli, exerting mechanical forces on cells and tissues. Understanding how these forces are converted into biochemical signals and how they mediate gene expression and cellular activities has been a significant focus in dentistry. Piezo channels, including Piezo1 and Piezo2, are mechanically activated cation channels characterized by an extracellular "cap" domain and 3 peripheral mechanosensitive blades. Recent research has demonstrated that mechanical forces applied to tissues can induce deformation of cell membranes, leading to conformational changes in Piezo channels that facilitate cation influx, thereby regulating cellular activities. The influx of Ca2+, the most discussed outcome of Piezo channel activation, initiates diverse signaling pathways that regulate dentin hypersensitivity, alveolar bone remodeling, and temporomandibular joint (TMJ) osteoarthritis. The chemical inhibition of Piezo channels has been shown to alleviate dentinal hypersensitivity, reduce the rate of orthodontic tooth movement, and slow the progression of TMJ osteoarthritis in rat models. Mice deficient in piezo channels exhibit impaired reactive dentin formation, reduced alveolar bone volume, and developmental deformities of the jawbone. Considering their roles in decoding the functional effects of mechanical forces, this review summarizes the involvement of Piezo channels in dentistry, organized by anatomical sites, to provide comprehensive knowledge of Piezo channels and their mediated signal crosstalk, which offers promising therapeutic prospects for the treatment of various force-related oral diseases.
Collapse
Affiliation(s)
- J Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Q Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - B Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - W Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Y Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Zhang ZH, Zhu R, Liu Y, Wang FF, Jiang AY, Dan RC, Liu YH, Tang YX, Liu J, Wang J. IL6-Dependent PIEZO1 Activation Promotes M1-Mediated Orthodontic Root Resorption via CXCL12/CXCR4. J Dent Res 2025:220345251316472. [PMID: 40077814 DOI: 10.1177/00220345251316472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Orthodontic root resorption (ORR) is a common yet significant complication of orthodontic treatment, largely driven by interactions between periodontal ligament cells (PDLCs) and M1 macrophages. Despite the clinical relevance of ORR, the role of mechanosensitive ion channels in PDLC-mediated ORR and the underlying mechanisms regulating inflammatory cell recruitment remain poorly understood. Here, we identified PIEZO1 as a critical mechanosensitive ion channel that modulates monocyte recruitment and ORR. Using in vivo models treated with the PIEZO1 activator Yoda1 and inhibitor AAV-shPiezo1, we demonstrated that PIEZO1 activation promoted the recruitment of Ly6Chi inflammatory monocytes and exacerbated ORR. In contrast, PIEZO1 inhibition attenuated ORR and the accumulation of M1 macrophages. Mechanistically, PIEZO1 positively regulated the C-X-C motif chemokine 12 (CXCL12) and its receptor, C-X-C chemokine receptor type 4 (CXCR4). Blocking the CXCL12/CXCR4 axis using the CXCR4 antagonist AMD3100 significantly alleviated ORR, reversed M1 macrophage accumulation, and mitigated the recruitment of CD11b+Ly6Chi monocytes. Transwell migration assays with application of the PIEZO1 activator Yoda1 and PIEZO1 inhibitor GsMTX4 consistently confirmed the PIEZO1/CXCL12/CXCR4 axis as a key driver of PDLC-monocyte interactions. Notably, PIEZO1 overactivation was linked to excessive IL-6 production, and IL-6 deficiency inhibited the activation of PIEZO1 induced by Yoda1, leading to attenuation of ORR, M1 macrophage accumulation, and CXCL12/CXCR4 axis activation. Collectively, these findings reveal PIEZO1 in PDLCs as a pivotal modulator of inflammatory monocyte recruitment via the CXCL12/CXCR4 axis in ORR, with IL-6 playing an essential role in PIEZO1 activation. This study provides new insights into the molecular crosstalk between PDLCs and macrophages, offering potential therapeutic targets for mitigating ORR in orthodontic patients.
Collapse
Affiliation(s)
- Z H Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - R Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - F F Wang
- Institute of Hematology, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - A Y Jiang
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - R C Dan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Y H Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y X Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - J Liu
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - J Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Xing H, Liu H, Chang Z, Zhang J. Research progress on the immunological functions of Piezo1 a receptor molecule that responds to mechanical force. Int Immunopharmacol 2024; 139:112684. [PMID: 39008939 DOI: 10.1016/j.intimp.2024.112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
The human immune system is capable of defending against, monitoring, and self-stabilizing various immune cells. Differentiation, proliferation, and development of these cells are regulated by biochemical signals. Moreover, biophysical signals, such as mechanical forces, have been found to affect immune cell function, thus introducing a new area of immunological research. Piezo1, a mechanically sensitive ion channel, was awarded the Nobel Prize for Physiology and Medicine in 2021. This channel is present on the surface of many cells, and when stimulated by mechanical force, it controls calcium (Ca2+) inside the cells, leading to changes in downstream signals and thus regulating cell functions. Piezo1 is also expressed in various innate and adaptive immune cells and plays a major role in the immune function. In this review, we will explore the physiological functions and regulatory mechanisms of Piezo1 and its impact on innate and adaptive immunity. This may offer new insights into diagnostics and therapeutics for the prevention and treatment of diseases and surgical infections.
Collapse
Affiliation(s)
- Hao Xing
- Department of Orthopaedics, The 960th Hospital of PLA, Jinan 250031, China
| | - Huan Liu
- Department of Orthopaedics, The 960th Hospital of PLA, Jinan 250031, China; The Second Medical University of Shandong, Weifang, Shandong 261000, China
| | - Zhengqi Chang
- Department of Orthopaedics, The 960th Hospital of PLA, Jinan 250031, China.
| | - Ji Zhang
- Department of Immunology, Basic Medical College, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
6
|
Zhang M, Wang QR, Hou X, Wang Q, Yang X, Zhou T, Liu X, Wu L, Wang J, Jin X, Liu Z, Huang B. Blockage of mechanosensitive Piezo1 channel alleviates the severity of experimental malaria-associated acute lung injury. Parasit Vectors 2024; 17:46. [PMID: 38303078 PMCID: PMC10832208 DOI: 10.1186/s13071-024-06144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Malaria-associated acute lung injury (MA-ALI) is a well-recognized clinical complication of severe, complicated malaria that is partly driven by sequestrations of infected red blood cells (iRBCs) on lung postcapillary induced impaired blood flow. In earlier studies the mechanosensitive Piezo1 channel emerged as a regulator of mechanical stimuli, but the function and underlying mechanism of Piezo1 impacting MA-ALI severity via sensing the impaired pulmonary blood flow are still not fully elucidated. Thus, the present study aimed to explore the role of Piezo1 in the severity of murine MA-ALI. METHODS Here, we utilized a widely accepted murine model of MA-ALI using C57BL/6 mice with Plasmodium berghei ANKA infection and then added a Piezo1 inhibitor (GsMTx4) to the model. The iRBC-stimulated Raw264.7 macrophages in vitro were also targeted with GsMTx4 to further explore the potential mechanism. RESULTS Our data showed an elevation in the expression of Piezo1 and number of Piezo1+-CD68+ macrophages in lung tissues of the experimental MA-ALI mice. Compared to the infected control mice, the blockage of Piezo1 with GsMTx4 dramatically improved the survival rate but decreased body weight loss, peripheral blood parasitemia/lung parasite burden, experimental cerebral malaria incidence, total protein concentrations in bronchoalveolar lavage fluid, lung wet/dry weight ratio, vascular leakage, pathological damage, apoptosis and number of CD68+ and CD86+ macrophages in lung tissues. This was accompanied by a dramatic increase in the number of CD206+ macrophages (M2-like subtype), upregulation of anti-inflammatory cytokines (e.g. IL-4 and IL-10) and downregulation of pro-inflammatory cytokines (e.g. TNF-α and IL-1β). In addition, GsMTx4 treatment remarkably decreased pulmonary intracellular iron accumulation, protein level of 4-HNE (an activator of ferroptosis) and the number of CD68+-Piezo1+ and CD68+-4-HNE+ macrophages but significantly increased protein levels of GPX4 (an inhibitor of ferroptosis) in experimental MA-ALI mice. Similarly, in vitro study showed that the administration of GsMTx4 led to a remarkable elevation in the mRNA levels of CD206, IL-4, IL-10 and GPX-4 but to a substantial decline in CD86, TNF-α, IL-1β and 4-HNE in the iRBC-stimulated Raw264.7 cells. CONCLUSIONS Our findings indicated that blockage of Piezo1 with GsMTx4 alleviated the severity of experimental MA-ALI in mice partly by triggering pulmonary macrophage M2 polarization and subsequent anti-inflammatory responses but inhibited apoptosis and ferroptosis in lung tissue. Our data suggested that targeting Piezo1 in macrophages could be a promising therapeutic strategy for treating MA-ALI.
Collapse
Affiliation(s)
- Min Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Qian Ru Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xinpeng Hou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Qi Wang
- Guangzhou Chest Hospital, Guangzhou, 510095, People's Republic of China
| | - Xiaoyan Yang
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, 511400, People's Republic of China
| | - Tingting Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xiaobo Liu
- School of Basic Medical Science, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zhenlong Liu
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| | - Bo Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
- School of Basic Medical Science, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
7
|
Duarte-Olivenza C, Moran G, Hurle JM, Lorda-Diez CI, Montero JA. Lysosomes, caspase-mediated apoptosis, and cytoplasmic activation of P21, but not cell senescence, participate in a redundant fashion in embryonic morphogenetic cell death. Cell Death Dis 2023; 14:813. [PMID: 38071330 PMCID: PMC10710412 DOI: 10.1038/s41419-023-06326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Micromass cultures of embryonic limb skeletal progenitors replicate the tissue remodelling processes observed during digit morphogenesis. Here, we have employed micromass cultures in an in vitro assay to study the nature of cell degeneration events associated with skeletogenesis. In the assay, "naive" progenitors obtained from the autopod aggregate to form chondrogenic nodules and those occupying the internodular spaces exhibit intense apoptosis and progressive accumulation of larger cells, showing intense SA-β-Gal histochemical labelling that strictly overlaps with the distribution of neutral red vital staining. qPCR analysis detected intense upregulation of the p21 gene, but P21 immunolabelling showed cytoplasmic rather than the nuclear distribution expected in senescent cells. Semithin sections and transmission electron microscopy confirmed the presence of canonical apoptotic cells, degenerated cell fragments in the process of phagocytic internalization by the neighbouring cells, and large vacuolated cells containing phagosomes. The immunohistochemical distribution of active caspase 3, cathepsin D, and β-galactosidase together with the reduction in cell death by chemical inhibition of caspases (Q-VAD) and lysosomal cathepsin D (Pepstatin A) supported a redundant implication of both pathways in the dying process. Chemical inhibition of P21 (UC2288) revealed a complementary role of this factor in the dying process. In contrast, treatment with the senolytic drug Navitoclax increased cell death without changing the number of cells positive for SA-β-Gal. We propose that this model of tissue remodelling involves the cooperative activation of multiple degradation routes and, most importantly, that positivity for SA-β-Gal reflects the occurrence of phagocytosis, supporting the rejection of cell senescence as a defining component of developmental tissue remodelling.
Collapse
Affiliation(s)
- Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Goretti Moran
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain.
| |
Collapse
|