1
|
Yu P, Zhao Z, Sun Q, Diao B, Sun C, Wang Y, Qiao H, Li H, Yang P. N-glycosylation of GSTO1 promotes cervical cancer migration and invasion through JAK/STAT3 pathway activation. Funct Integr Genomics 2025; 25:51. [PMID: 40032681 DOI: 10.1007/s10142-025-01565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
Protein glycosylation is strongly associated with tumor progression. Glutathione S-transferase omega 1 (GSTO1) is a member of the glutathione S-transferase family. The significance of GSTO1 N-glycosylation in the progression of cervical cancer (CC) has remained elusive. In this study, we investigated the functional significance of GSTO1 N-glycosylation in CC progression. We employed immunohistochemistry to detect the relative expression of evaluating the link between GSTO1 in CC and benign tissues and the overall survival (OS) and progression-free survival (PFS) in CC patients.In vitro and in vivo experiments to detect CC cell proliferation or metastatic ability after GSTO1 downregulation. NetNGly1.0 Server database predicts potential N-glycosylation modification sites of GSTO1 (Asn55, Asn135, Asn190). Investigating GSTO1 N-glycosylation's function in cellular migration, invasion and epithelial-mesenchymal transition (EMT), we mutated the N-glycosylation sites of GSTO1 through lentivirus-based insertional mutagenesis. Detection of signalling pathways associated with N-glycosylation-modified GSTO1 by enrichment analysis and Western blot. Compared to normal cervical tissue, CC tissue showed significantly higher GSTO1 expression. Further, high GSTO1 levels were a poor predictor of OS and PFS. Both cell and animal experiments suggested that down-regulation of GSTO1 inhibited cell proliferation and metastasis. Glycosylation modification of targeted mutant GSTO1 at positions 55, 135 and 190 significantly inhibits migration and invasion of CC cells. GSTO1 N-glycosylation fixed point mutation inhibits EMT process in CC cells. Mechanistically, N-glycosylated GSTO1 promoted the expression of JAK/STAT3 pathway related markers. GSTO1 N-glycosylation is associated with CC progression and may promote EMT via JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Panpan Yu
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- School of Medicine, Shihezi University, Shihezi, China
| | - Zouyu Zhao
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Qianyu Sun
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Bowen Diao
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Chongfeng Sun
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Wang
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Hui Qiao
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Hong Li
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ping Yang
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
2
|
Killarney ST, Mesa G, Washart R, Mayro B, Dillon K, Wardell SE, Newlin M, Lu M, Rmaileh AA, Liu N, McDonnell DP, Pendergast AM, Wood KC. PKN2 Is a Dependency of the Mesenchymal-like Cancer Cell State. Cancer Discov 2025; 15:595-615. [PMID: 39560431 PMCID: PMC11875962 DOI: 10.1158/2159-8290.cd-24-0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Cancer cells exploit a mesenchymal-like transcriptional state (MLS) to survive drug treatments. Although the MLS is well characterized, few therapeutic vulnerabilities targeting this program have been identified. In this study, we systematically identify the dependency network of mesenchymal-like cancers through an analysis of gene essentiality scores in ∼800 cancer cell lines, nominating a poorly studied kinase, PKN2, as a top therapeutic target of the MLS. Coessentiality relationships, biochemical experiments, and genomic analyses of patient tumors revealed that PKN2 promotes mesenchymal-like cancer growth through a PKN2-SAV1-TAZ signaling mechanism. Notably, pairing genetic PKN2 inhibition with clinically relevant targeted therapies against EGFR, KRAS, and BRAF suppresses drug resistance by depleting mesenchymal-like drug-tolerant persister cells. These findings provide evidence that PKN2 is a core regulator of the Hippo tumor suppressor pathway and highlight the potential of PKN2 inhibition as a generalizable therapeutic strategy to overcome drug resistance driven by the MLS across cancer contexts. Significance: This work identifies PKN2 as a core member of the Hippo signaling pathway, and its inhibition blocks YAP/TAZ-driven tumorigenesis. Furthermore, this study discovers PKN2-TAZ as arguably the most selective dependency of mesenchymal-like cancers and supports specific inhibition of PKN2 as a provocative strategy to overcome drug resistance in diverse cancer contexts. See related commentary by Shen and Tan, p. 458.
Collapse
Affiliation(s)
- Shane T. Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Gabriel Mesa
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Rachel Washart
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Benjamin Mayro
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kerry Dillon
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Madeline Newlin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Min Lu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Areej Abu Rmaileh
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Nicky Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
3
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Batal A, Garousi S, Finnson KW, Philip A. CD109, a master regulator of inflammatory responses. Front Immunol 2025; 15:1505008. [PMID: 39990858 PMCID: PMC11842317 DOI: 10.3389/fimmu.2024.1505008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Inflammation is a complex response to harmful stimuli, crucial for immunity, and linked to chronic diseases and cancer, with TGF-β and NF-κB pathways as key regulators. CD109 is a glycosylphosphatidylinositol (GPI)-anchored protein, that our group has originally identified as a TGF-β co-receptor and inhibitor of TGF-β signaling. CD109 modulates TGF-β and NF-κB pathways, to influence immune responses and inflammation. CD109's multifaceted role in inflammation spans various tissue types, including the skin, lung, bone and bone-related tissues, and various types of cancers. CD109 exerts its effects by modulating processes such as cytokine secretion, immune cell recruitment, macrophage polarization, T helper cell function and cancer cell phenotype and function. Here, we review CD109's regulatory functions in inflammatory responses in these various tissues and cell types. Exploration of CD109's mechanisms of action will enhance our understanding of its contributions to disease pathology and its potential for therapeutic applications.
Collapse
Affiliation(s)
- Adel Batal
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Setareh Garousi
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
5
|
Kim H, Bae S, Kim SJ. Increased SNAI2 expression and defective collagen adhesion in cells with pediatric dementia, juvenile ceroid lipofuscinosis. Biochem Biophys Res Commun 2024; 738:150561. [PMID: 39154552 DOI: 10.1016/j.bbrc.2024.150561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Dementia-related neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), are known to be caused by accumulation of toxic proteins. However, the molecular mechanisms that cause neurodegeneration and its biophysical effects on cells remain unclear. In this study, we used juvenile neuronal ceroid lipofuscinosis (JNCL), a pediatric dementia with a clear etiology of mutations in ceroid lipofuscinosis neuronal 3 (CLN3), to explore the changes in cell adhesion, a biophysical process that regulates neuronal development and survival. We used JNCL cerebral organoid gene expression datasets to identify the biological pathways that affect neural development, and found enriched gene expression in the epithelial-mesenchymal transition (EMT) pathway and increased expression of its inducer snail family transcriptional repressor 2 (SNAI2). A cell adhesion assay using lymphoblasts from patients with JNCL revealed defective adhesion to cell culture plates, glass surfaces, collagen type I, and neuroblast-like cells. To determine whether inhibition of EMT could improve the cell adhesion of JNCL lymphoblasts, we used all-trans retinoic acid, a well-known EMT inhibitor and inducer of neural differentiation. In JNCL lymphoblasts, ATRA treatment enhanced adhesion to collagen type I and these effects were abolished by Ca2+ chelator. These results provide new insights into the role of CLN3 and cell adhesion in the pathogenesis of NDD.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam, 31499, South Korea
| | - Sechul Bae
- Jung Cosmetic Corporation, Sinchang, Asan, Chungnam, 31537, South Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam, 31499, South Korea.
| |
Collapse
|
6
|
Kim RT, Whited JL. Putative epithelial-mesenchymal transitions during salamander limb regeneration: Current perspectives and future investigations. Ann N Y Acad Sci 2024; 1540:89-103. [PMID: 39269330 PMCID: PMC11471381 DOI: 10.1111/nyas.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Previous studies have implicated epithelial-mesenchymal transition (EMT) in salamander limb regeneration. In this review, we describe putative roles for EMT during each stage of limb regeneration in axolotls and other salamanders. We hypothesize that EMT and EMT-like gene expression programs may regulate three main cellular processes during limb regeneration: (1) keratinocyte migration during wound closure; (2) transient invasion of the stump by epithelial cells undergoing EMT; and (3) use of EMT-like programs by non-epithelial blastemal progenitor cells to escape the confines of their niches. Finally, we propose nontraditional roles for EMT during limb regeneration that warrant further investigation, including alternative EMT regulators, stem cell activation, and fibrosis induced by aberrant EMT.
Collapse
Affiliation(s)
- Ryan T Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Yuan N, Chen Y, Yan Y, Wang F, Xu X, Wang M, Diao J, Xiao W. Myricetin alleviates renal tubular epithelial-mesenchymal transition via NOX4/NF- κB/snail axis in diabetic nephropathy based on network pharmacology analysis. Heliyon 2024; 10:e35234. [PMID: 39224244 PMCID: PMC11367043 DOI: 10.1016/j.heliyon.2024.e35234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic nephropathy (DN), a leading cause of end-stage renal disease, remains a formidable challenge in diabetes management due to the complex nature of its pathogenesis, particularly the epithelial-mesenchymal transition (EMT) process. Our innovative study leverages network pharmacology to explore the therapeutic potentials of Myricetin, a natural flavonoid, focusing on its effects against NOX4, a critical mediator in DN progression. This investigation marks a pioneering approach by integrating network pharmacology to predict and elucidate the inhibitory relationship between Myricetin and NOX4. Utilizing a high-fat diet/streptozotocin (HFD/STZ) induced DN mouse model, we delved into the effects of Myricetin on renal EMT processes. Through network pharmacology analyses coupled with molecular docking studies, we identified and confirmed Myricetin's binding efficacy to NOX4. Extensive in vitro and in vivo experiments further established Myricetin's significant impact on mitigating EMT by modulating the NOX4-NF-κB-Snail signaling pathway. Results from our research demonstrated notable improvements in renal function and reductions in tissue fibrosis among treated HFD/STZ mice. By curtailing NOX4 expression, Myricetin effectively reduced reactive oxygen species (ROS) production, thereby inhibiting NF-κB activation and subsequent Snail expression, crucial steps in the EMT pathway. Supported by both theoretical predictions and empirical validations, this study unveils the mechanism underlying Myricetin's modulation of EMT in DN through disrupting the NOX4-NF-κB-Snail axis. These findings not only contribute a new therapeutic avenue for DN treatment but also underscore the utility of network pharmacology in advancing drug discovery processes.
Collapse
Affiliation(s)
- Ningning Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuchi Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yangtian Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fujing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinyao Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianxin Diao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
8
|
Do KK, Wang F, Sun X, Zhang Y, Liang W, Liu JY, Jiang DY, Lu X, Wang W, Zhang L, Dean DC, Liu Y. Conditional deletion of Zeb1 in Csf1r + cells reduces inflammatory response of the cornea to alkali burn. iScience 2024; 27:109694. [PMID: 38660397 PMCID: PMC11039400 DOI: 10.1016/j.isci.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
ZEB1 is an essential factor in embryonic development. In adults, it is often highly expressed in malignant tumors with low expression in normal tissues. The major biological function of ZEB1 in developing embryos and progressing cancers is to transdifferentiate cells from an epithelial to mesenchymal phenotype; but what roles ZEB1 plays in normal adult tissues are largely unknown. We previously reported that the reduction of Zeb1 in monoallelic global knockout (Zeb1+/-) mice reduced corneal inflammation-associated neovascularization following alkali burn. To uncover the cellular mechanism underlying the Zeb1 regulation of corneal inflammation, we functionally deleted Zeb1 alleles in Csf1r+ myeloid cells using a conditional knockout (cKO) strategy and found that Zeb1 cKO reduced leukocytes in the cornea after alkali burn. The reduction of immune cells was due to their increased apoptotic rate and linked to a Zeb1-downregulated apoptotic pathway. We conclude that Zeb1 facilitates corneal inflammatory response by maintaining Csf1r+ cell viability.
Collapse
Affiliation(s)
- Khoi K. Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Xiaolei Sun
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX 78229, USA
| | - Wei Liang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - John Y. Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Daniel Y. Jiang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - Douglas C. Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
10
|
Tagami M, Kasashima H, Kakehashi A, Yoshikawa A, Nishio M, Misawa N, Sakai A, Wanibuchi H, Yashiro M, Azumi A, Honda S. Stromal area differences with epithelial-mesenchymal transition gene changes in conjunctival and orbital mucosa-associated lymphoid tissue lymphoma. Front Oncol 2024; 14:1277749. [PMID: 38322414 PMCID: PMC10845137 DOI: 10.3389/fonc.2024.1277749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Purpose To examine the molecular biological differences between conjunctival mucosa-associated lymphoid tissue (MALT) lymphoma and orbital MALT lymphoma in ocular adnexa lymphoma. Methods Observational case series. A total of 129 consecutive, randomized cases of ocular adnexa MALT lymphoma diagnosed histopathologically between 2008 and 2020.Total RNA was extracted from formalin-fixed paraffin-embedded tissue from ocular adnexa MALT lymphoma, and RNA-sequencing was performed. Orbital MALT lymphoma gene expression was compared with that of conjunctival MALT lymphoma. Gene set (GS) analysis detecting for gene set cluster was performed in RNA-sequence. Related proteins were further examined by immunohistochemical staining. In addition, artificial segmentation image used to count stromal area in HE images. Results GS analysis showed differences in expression in 29 GS types in primary orbital MALT lymphoma (N=5,5, FDR q-value <0.25). The GS with the greatest difference in expression was the GS of epithelial-mesenchymal transition (EMT). Based on this GS change, immunohistochemical staining was added using E-cadherin as an epithelial marker and vimentin as a mesenchymal marker for EMT. There was significant staining of vimentin in orbital lymphoma (P<0.01, N=129) and of E-cadherin in conjunctival lesions (P=0.023, N=129). Vimentin staining correlated with Ann Arbor staging (1 versus >1) independent of age and sex on multivariate analysis (P=0.004). Stroma area in tumor were significant difference(P<0.01). Conclusion GS changes including EMT and stromal area in tumor were used to demonstrate the molecular biological differences between conjunctival MALT lymphoma and orbital MALT lymphoma in ocular adnexa lymphomas.
Collapse
Affiliation(s)
- Mizuki Tagami
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Ophthalmology Department and Eye Center, Kobe Kaisei Hospital, Kobe, Japan
| | - Hiroaki Kasashima
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsuko Yoshikawa
- Ophthalmology Department and Eye Center, Kobe Kaisei Hospital, Kobe, Japan
| | - Mizuho Nishio
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihiko Misawa
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsushi Sakai
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Azumi
- Ophthalmology Department and Eye Center, Kobe Kaisei Hospital, Kobe, Japan
| | - Shigeru Honda
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|