1
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zhao X, Cui L. Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis 2024; 15:775. [PMID: 39461979 PMCID: PMC11513100 DOI: 10.1038/s41419-024-07122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The tumor microenvironment (TME) orchestrates a complex interplay between tumor cells and immune cells, crucially modulating the immune response. This review delves into the pivotal role of metabolic reprogramming in the TME, highlighting how tumor-derived metabolites influence T lymphocyte functionality and the efficacy of cancer immunotherapies. Focusing on the diverse roles of these metabolites, we examine how lactate, lipids, amino acids, and other biochemical signals act not only as metabolic byproducts but as regulatory agents that can suppress or potentiate T cell-mediated immunity. By integrating recent findings, we underscore the dual impact of these metabolites on enhancing tumor progression and inhibiting immune surveillance. Furthermore, we propose innovative therapeutic strategies that target metabolic pathways to restore immune function within the TME. The insights provided in this review pave the way for the development of metabolic interventions aimed at enhancing the success of immunotherapies in oncology, offering new hope for precision medicine in the treatment of cancer.
Collapse
Affiliation(s)
- Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Martinez R, Finocchiaro C, Delhaye L, Gysens F, Anckaert J, Trypsteen W, Versteven M, Lion E, Van Lint S, Vermaelen K, de Bony EJ, Mestdagh P. A co-culture model to study modulators of tumor immune evasion through scalable arrayed CRISPR-interference screens. Front Immunol 2024; 15:1444886. [PMID: 39497819 PMCID: PMC11532180 DOI: 10.3389/fimmu.2024.1444886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Cancer cells effectively evade immune surveillance, not only through the well-known PD-1/PD-L1 pathway but also via alternative mechanisms that impair patient response to immune checkpoint inhibitors. We present a novel co-culture model that pairs a reporter T-cell line with different melanoma cell lines that have varying immune evasion characteristics. We developed a scalable high-throughput lentiviral arrayed CRISPR interference (CRISPRi) screening protocol to conduct gene perturbations in both T-cells and melanoma cells, enabling the identification of genes that modulate tumor immune evasion. Our study functionally validates the co-culture model system and demonstrates the performance of the CRISPRi-screening protocol by modulating the expression of known regulators of tumor immunity. Together, our work provides a robust framework for future research aimed at systematically exploring mechanisms of tumor immune evasion.
Collapse
Affiliation(s)
- Ramiro Martinez
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chiara Finocchiaro
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Louis Delhaye
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, Flanders Institute for Biotechnology – UGENT (VIB-UGENT), Ghent, Belgium
| | - Fien Gysens
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wim Trypsteen
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Lint
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Eric James de Bony
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
4
|
Myrda J, Bremm F, Schaft N, Dörrie J. The Role of the Large T Antigen in the Molecular Pathogenesis of Merkel Cell Carcinoma. Genes (Basel) 2024; 15:1127. [PMID: 39336718 PMCID: PMC11431464 DOI: 10.3390/genes15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The large T antigen (LT) of the Merkel cell polyomavirus (MCPyV) is crucial for Merkel cell carcinoma (MCC), a rare but very aggressive form of neuroendocrine skin cancer. The clonal integration of MCPyV DNA into the host genome is a signature event of this malignancy. The resulting expression of oncogenes, including the small T (sT) antigen and a truncated form of the LT (truncLT), directly contribute to carcinogenesis. The truncation of the C-terminus of LT prevents the virus from replicating due to the loss of the origin binding domain (OBD) and the helicase domain. This precludes cytopathic effects that would lead to DNA damage and ultimately cell death. At the same time, the LxCxE motif in the N-terminus is retained, allowing truncLT to bind the retinoblastoma protein (pRb), a cellular tumor suppressor. The continuously inactivated pRb promotes cell proliferation and tumor development. truncLT exerts several classical functions of an oncogene: altering the host cell cycle, suppressing innate immune responses to viral DNA, causing immune escape, and shifting metabolism in favor of cancer cells. Given its central role in MCC, the LT is a major target for therapeutic interventions with novel approaches, such as immune checkpoint inhibition, T cell-based immunotherapy, and cancer vaccines.
Collapse
Affiliation(s)
- Julia Myrda
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Yang S, Han Z, Tan Z, Wu Z, Ye J, Cai S, Feng Y, He H, Wen B, Zhu X, Ye Y, Huang H, Wang S, Zhong W, Deng Y. Machine learning-based integration develops a stress response stated T cell (Tstr)-related score for predicting outcomes in clear cell renal cell carcinoma. Int Immunopharmacol 2024; 132:112017. [PMID: 38599101 DOI: 10.1016/j.intimp.2024.112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Establishment of a reliable prognostic model and identification of novel biomarkers are urgently needed to develop precise therapy strategies for clear cell renal cell carcinoma (ccRCC). Stress response stated T cells (Tstr) are a new T-cell subtype, which are related to poor disease stage and immunotherapy response in various cancers. METHODS 10 machine-learning algorithms and their combinations were applied in this work. A stable Tstr-related score (TCs) was constructed to predict the outcomes and PD-1 blockade treatment response in ccRCC patients. A nomogram based on TCs for personalized prediction of patient prognosis was constructed. Functional enrichment analysis and TimiGP algorithm were used to explore the underlying role of Tstr in ccRCC. The key TCs-related gene was identified by comprehensive analysis, and the bioinformatics results were verified by immunohistochemistry using a tissue microarray. RESULTS A robust TCs was constructed and validated in four independent cohorts. TCs accurately predicted the prognosis and PD-1 blockade treatment response in ccRCC patients. The novel nomogram was able to precisely predict the outcomes of ccRCC patients. The underlying biological process of Tstr was related to acute inflammatory response and acute-phase response. Mast cells were identified to be involved in the role of Tstr as a protective factor in ccRCC. TNFS13B was shown to be the key TCs-related gene, which was an independent predictor of unfavorable prognosis. The protein expression analysis of TNFSF13B was consistent with the mRNA analysis results. High expression of TNFSF13B was associated with poor response to PD-1 blockade treatment. CONCLUSIONS This study provides a Tstr cell-related score for predicting outcomes and PD-1 blockade therapy response in ccRCC. Tstr cells may exert their pro-tumoral role in ccRCC, acting against mast cells, in the acute inflammatory tumor microenvironment. TNFSF13B could serve as a key biomarker related to TCs.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Zhaodong Han
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zeheng Tan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhenjie Wu
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Shanghua Cai
- Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yuanfa Feng
- Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Huichan He
- Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Biyan Wen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xuejin Zhu
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Yongkang Ye
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, Guangdong 523059, China
| | - Huiting Huang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Sheng Wang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China.
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China; Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China.
| | - Yulin Deng
- Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|