1
|
Wang Y, Li G, Su J, Liu Y, Zhang X, Zhang G, Wu Z, Li J, Wang X, Zhang Y, Bai M, Yao Y, Wang R, Shao K. Tumor-Associated Macrophages Nano-Reprogrammers Induce "Gear Effect" to Empower Glioblastoma Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406839. [PMID: 39797442 DOI: 10.1002/smll.202406839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/24/2024] [Indexed: 01/13/2025]
Abstract
Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability. In the meantime, by induction of a function-oriented "gear effect", MG5-S-IMDQ treatment extended its impact systemically by enhancing the infiltration of type I conventional dendritic cells (cDC1s) into the tumor sites and bolstering adaptive immune responses. In sum, by precisely working on M2-TAMs as a unique target in tumor situ, the nano-reprogrammers successfully established a robust immune network that worked synergistically to combat tumors. This facile nanoplatform-based immunomodulatory strategy, serving as a powerful and convenient immune monotherapy or as a complementary treatment alongside other therapies like surgery, provided deep insights for advancing translational study in GBM.
Collapse
Affiliation(s)
- Yang Wang
- Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, 110042, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianlong Su
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yiming Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaomai Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Guanyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhihao Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinrong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuxuan Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Mingrui Bai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuanhang Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ruimin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Kun Shao
- Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, 110042, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Liu Y, Cai L, Wang H, Yao L, Wu Y, Zhang K, Su Z, Zhou Y. BRD4 promotes immune escape of glioma cells by upregulating PD-L1 expression. J Neurooncol 2025; 171:669-679. [PMID: 39607572 DOI: 10.1007/s11060-024-04889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Glioblastoma multiforme (GBM) poses significant challenges in treatment due to its aggressive nature and immune escape mechanisms. Despite recent advances in immune checkpoint blockade therapies, GBM prognosis remains poor. The role of bromodomain and extraterminal domain (BET) protein BRD4 in GBM, especially its interaction with immune checkpoints, is not well understood. Our study aimed to explore the role of BRD4 in GBM, especially the immune aspects. METHODS In this study, we performed bioinformatics gene expression and survival analysis of BRD4 using TCGA and CGGA databases. In addition, we investigated the effects of BRD4 on glioma cell proliferation, invasion and migration by clone formation assay, Transwell assay, CCK8 assay and wound healing assay. Chromatin immunoprecipitation (ChIP) assay was conducted to confirm BRD4 binding to the programmed death ligand 1 (PD-L1) promoter. GL261 cells with BRD4 shRNA and/or PD-L1 cDNA were intracranially injected into mice to investigate tumor growth and survival time. Tumor tissue characteristics were analyzed using H&E and IHC staining and immune cell infiltration were assessed by flow cytometry. RESULTS The results showed that elevated expression of BRD4 in high-grade gliomas was associated with poor patient survival. In addition, we validated the promotional effects of BRD4 on glioma cell proliferation, invasion and migration. The results of ChIP experiments showed that BRD4 is a regulator of PD-L1 at the transcriptional level, implying that it is involved in the immune escape mechanism of glioma cells. In vivo studies showed that BRD4 knockdown inhibited tumor growth and reduced immunosuppression, improving prognosis. CONCLUSION BRD4 has the capability to regulate the growth of glioblastoma and enhance immune suppression by promoting PD-L1 expression. Targeting BRD4 represents a promising direction for future research and treatment.
Collapse
Affiliation(s)
- Yongsheng Liu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lize Cai
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Wang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lin Yao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Wu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Zhang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zuopeng Su
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Guo X, Piao H, Sui R. Exosomes in the Chemoresistance of Glioma: Key Point in Chemoresistance. J Cell Mol Med 2025; 29:e70401. [PMID: 39950738 PMCID: PMC11826829 DOI: 10.1111/jcmm.70401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025] Open
Abstract
Gliomas are the most ordinary primary virulent brain tumours and commonly used clinical treatments include tumour resection, radiation therapy and chemotherapy. Although significant progress has been made in recent years in progression-free survival (PFS) and overall survival (OS) for patients with high-grade gliomas, the prognosis for patients remains poor. Chemoresistance refers to the phenomenon of decreased sensitivity of tumour cells to drugs, resulting in reduced or ineffective drug efficacy, and is an important cause of failure of tumour chemotherapy. Exosomes, a type of extracellular vesicle, are secreted by cancer cells and various stromal cells in the tumour microenvironment (TME) and transfer their inclusions to cancer cells, increasing chemoresistance. Furthermore, depletion of exosomes reverses certain detrimental effects on tumour metabolism and restores sensitivity to chemotherapeutic agents. Here, we summarised the correlation between exosomes and resistance to chemotherapeutic agents in glioma patients, the mechanisms of action of exosomes involved in resistance and their clinical value. We aimed to afford new thoughts for research, clinical diagnosis and intervention in the mechanisms of chemoresistance in glioma patients.
Collapse
Affiliation(s)
- Xu Guo
- Department of NeurosurgeryCancer Hospital of Daflian University of Technology, Liaoning Cancer Hospital & InstituteShenyangLiaoningChina
| | - Haozhe Piao
- Department of NeurosurgeryCancer Hospital of Daflian University of Technology, Liaoning Cancer Hospital & InstituteShenyangLiaoningChina
| | - Rui Sui
- Department of NeurosurgeryCancer Hospital of Daflian University of Technology, Liaoning Cancer Hospital & InstituteShenyangLiaoningChina
| |
Collapse
|
4
|
Wang T, Liu S, Shen W, Liu J, Liu Y, Li Y, Zhang F, Li T, Zhang X, Tian W, Zhang J, Ma J, Guo Y, Mi X, Lin Y, Hu Q, Zhang X, Liu J, Wang H. α-linolenic acid mitigates microglia-mediated neuroinflammation of schizophrenia in mice by suppressing the NF-κB/NLRP3 pathway via binding GPR120-β-arrestin 2. Int Immunopharmacol 2024; 142:113047. [PMID: 39236458 DOI: 10.1016/j.intimp.2024.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a heterogeneous psychiatric disorder that is poorly treated by current therapies. Emerging evidence indicates that SCZ is closely correlated with a persistent neuroinflammation. α-linolenic acid (ALA) is highly concentrated in the brain and represents a modulator of the immune system by decreasing the inflammatory response in chronic metabolic diseases. This study was first designed to investigate the potential role of dietary ALA on cognitive function and neuroinflammation in mice with SCZ. METHODS In vivo, after 2 weeks of modeling, mice were treated with dietary ALA treatment for 6 weeks. In vitro, inflammation model was created using lipopolysaccharide as an inducer in BV2 microglial cells. RESULTS Our results demonstrated that ALA alleviated cognitive impairment and enhanced synaptic plasticity in mice with SCZ. Moreover, ALA mitigated systematic and cerebral inflammation through elevating IL-10 and inhibiting IL-1β, IL-6, IL-18 and TNF-α. Furthermore, ALA notably inhibited microglia and pro-inflammatory monocytes, as well as microglial activation andpolarization. Mechanistically, ALA up-regulated the expressions of G protein coupled receptor (GPR) 120 and associated β-inhibitor protein 2 (β-arrestin2), accompanied by observable weakened levels of transforming growth factor-β activated kinase 1 (TAK1), NF-κB p65, cysteine proteinase-1 (caspase-1), pro-caspase-1, associated speck-like protein (ASC) and NLRP3. In vitro, ALA directly restrained the inflammation of microglia by decreasing the levels of pro-inflammatory factors and regulating microglial polarization via GPR120-NF-κB/NLRP3inflammasome signaling pathway, whereas AH7614 definitely eliminated this anti-inflammatory effect of ALA. CONCLUSION Dietary ALA ameliorates microglia-mediated neuroinflammation by suppressing the NF-κB/NLRP3 pathway via binding GPR120-β-arrestin2.
Collapse
Affiliation(s)
- Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Shudan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Wenke Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Jian Liu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yuanyuan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Feng Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Ting Li
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Xiaoxu Zhang
- General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Wenyan Tian
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiani Zhang
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Junbai Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Yamei Guo
- General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Xiaojuan Mi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Yuan Lin
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Qikuan Hu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China; General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| |
Collapse
|
5
|
Chagas PS, Chagas HIS, Naeini SE, Bhandari B, Gouron J, Malta TM, Salles ÉL, Wang LP, Yu JC, Baban B. Network-Based Transcriptome Analysis Reveals FAM3C as a Novel Potential Biomarker for Glioblastoma. J Cell Biochem 2024; 125:e30612. [PMID: 38923575 DOI: 10.1002/jcb.30612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma (GBM) is the most common form of malignant primary brain tumor with a high mortality rate. The aim of the present study was to investigate the clinical significance of Family with Sequence Similarity 3, Member C, FAM3C, in GBM using bioinformatic-integrated analysis. First, we performed the transcriptomic integration analysis to assess the expression profile of FAM3C in GBM using several data sets (RNA-sequencing and scRNA-sequencing), which were obtained from TCGA and GEO databases. By using the STRING platform, we investigated FAM3C-coregulated genes to construct the protein-protein interaction network. Next, Metascape, Enrichr, and CIBERSORT databases were used. We found FAM3C high expression in GBM with poor survival rates. Further, we observed, via FAM3C coexpression network analysis, that FAM3C plays key roles in several hallmarks of cancer. Surprisingly, we also highlighted five FAM3C‑coregulated genes overexpressed in GBM. Specifically, we demonstrated the association between the high expression of FAM3C and the abundance of the different immune cells, which may markedly worsen GBM prognosis. For the first time, our findings suggest that FAM3C not only can be a new emerging biomarker with promising therapeutic values to GBM patients but also gave a new insight into a potential resource for future GBM studies.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
| | | | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jules Gouron
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
| | - Tathiane M Malta
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Lei P Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
- Georgia Institute of Cannabis Research, Medicinal Cannabis of Georgia LLC, Augusta, Georgia, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
- Georgia Institute of Cannabis Research, Medicinal Cannabis of Georgia LLC, Augusta, Georgia, USA
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
6
|
White J, White MPJ, Wickremesekera A, Peng L, Gray C. The tumour microenvironment, treatment resistance and recurrence in glioblastoma. J Transl Med 2024; 22:540. [PMID: 38844944 PMCID: PMC11155041 DOI: 10.1186/s12967-024-05301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
The adaptability of glioblastoma (GBM) cells, encouraged by complex interactions with the tumour microenvironment (TME), currently renders GBM an incurable cancer. Despite intensive research, with many clinical trials, GBM patients rely on standard treatments including surgery followed by radiation and chemotherapy, which have been observed to induce a more aggressive phenotype in recurrent tumours. This failure to improve treatments is undoubtedly a result of insufficient models which fail to incorporate components of the human brain TME. Research has increasingly uncovered mechanisms of tumour-TME interactions that correlate to worsened patient prognoses, including tumour-associated astrocyte mitochondrial transfer, neuronal circuit remodelling and immunosuppression. This tumour hijacked TME is highly implicated in driving therapy resistance, with further alterations within the TME and tumour resulting from therapy exposure inducing increased tumour growth and invasion. Recent developments improving organoid models, including aspects of the TME, are paving an exciting future for the research and drug development for GBM, with the hopes of improving patient survival growing closer. This review focuses on GBMs interactions with the TME and their effect on tumour pathology and treatment efficiency, with a look at challenges GBM models face in sufficiently recapitulating this complex and highly adaptive cancer.
Collapse
Affiliation(s)
- Jasmine White
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | | | - Agadha Wickremesekera
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
7
|
Ho WM, Chen CY, Chiang TW, Chuang TJ. A longer time to relapse is associated with a larger increase in differences between paired primary and recurrent IDH wild-type glioblastomas at both the transcriptomic and genomic levels. Acta Neuropathol Commun 2024; 12:77. [PMID: 38762464 PMCID: PMC11102269 DOI: 10.1186/s40478-024-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, which remains incurable and often recurs rapidly after initial therapy. While large efforts have been dedicated to uncover genomic/transcriptomic alternations associated with the recurrence of GBMs, the evolutionary trajectories of matched pairs of primary and recurrent (P-R) GBMs remain largely elusive. It remains challenging to identify genes associated with time to relapse (TTR) and construct a stable and effective prognostic model for predicting TTR of primary GBM patients. By integrating RNA-sequencing and genomic data from multiple datasets of patient-matched longitudinal GBMs of isocitrate dehydrogenase wild-type (IDH-wt), here we examined the associations of TTR with heterogeneities between paired P-R GBMs in gene expression profiles, tumor mutation burden (TMB), and microenvironment. Our results revealed a positive correlation between TTR and transcriptomic/genomic differences between paired P-R GBMs, higher percentages of non-mesenchymal-to-mesenchymal transition and mesenchymal subtype for patients with a short TTR than for those with a long TTR, a high correlation between paired P-R GBMs in gene expression profiles and TMB, and a negative correlation between the fitting level of such a paired P-R GBM correlation and TTR. According to these observations, we identified 55 TTR-associated genes and thereby constructed a seven-gene (ZSCAN10, SIGLEC14, GHRHR, TBX15, TAS2R1, CDKL1, and CD101) prognostic model for predicting TTR of primary IDH-wt GBM patients using univariate/multivariate Cox regression analyses. The risk scores estimated by the model were significantly negatively correlated with TTR in the training set and two independent testing sets. The model also segregated IDH-wt GBM patients into two groups with significantly divergent progression-free survival outcomes and showed promising performance for predicting 1-, 2-, and 3-year progression-free survival rates in all training and testing sets. Our findings provide new insights into the molecular understanding of GBM progression at recurrence and potential targets for therapeutic treatments.
Collapse
Affiliation(s)
- Wei-Min Ho
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Trees-Juen Chuang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Qiu Y, Lu G, Li N, Hu Y, Tan H, Jiang C. Exosome-mediated communication between gastric cancer cells and macrophages: implications for tumor microenvironment. Front Immunol 2024; 15:1327281. [PMID: 38455041 PMCID: PMC10917936 DOI: 10.3389/fimmu.2024.1327281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer (GC) is a malignant neoplasm originating from the epithelial cells of the gastric mucosa. The pathogenesis of GC is intricately linked to the tumor microenvironment within which the cancer cells reside. Tumor-associated macrophages (TAMs) primarily differentiate from peripheral blood monocytes and can be broadly categorized into M1 and M2 subtypes. M2-type TAMs have been shown to promote tumor growth, tissue remodeling, and angiogenesis. Furthermore, they can actively suppress acquired immunity, leading to a poorer prognosis and reduced tolerance to chemotherapy. Exosomes, which contain a myriad of biologically active molecules including lipids, proteins, mRNA, and noncoding RNAs, have emerged as key mediators of communication between tumor cells and TAMs. The exchange of these molecules via exosomes can markedly influence the tumor microenvironment and consequently impact tumor progression. Recent studies have elucidated a correlation between TAMs and various clinicopathological parameters of GC, such as tumor size, differentiation, infiltration depth, lymph node metastasis, and TNM staging, highlighting the pivotal role of TAMs in GC development and metastasis. In this review, we aim to comprehensively examine the bidirectional communication between GC cells and TAMs, the implications of alterations in the tumor microenvironment on immune escape, invasion, and metastasis in GC, targeted therapeutic approaches for GC, and the efficacy of potential GC drug resistance strategies.
Collapse
Affiliation(s)
- Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Na Li
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yanyan Hu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Hao Tan
- Thoracic Esophageal Radiotherapy Department, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Chengyao Jiang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
10
|
Chiariello M, Inzalaco G, Barone V, Gherardini L. Overcoming challenges in glioblastoma treatment: targeting infiltrating cancer cells and harnessing the tumor microenvironment. Front Cell Neurosci 2023; 17:1327621. [PMID: 38188666 PMCID: PMC10767996 DOI: 10.3389/fncel.2023.1327621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Glioblastoma (GB) is a highly malignant primary brain tumor with limited treatment options and poor prognosis. Despite current treatment approaches, including surgical resection, radiation therapy, and chemotherapy with temozolomide (TMZ), GB remains mostly incurable due to its invasive growth pattern, limited drug penetration beyond the blood-brain barrier (BBB), and resistance to conventional therapies. One of the main challenges in GB treatment is effectively eliminating infiltrating cancer cells that remain in the brain parenchyma after primary tumor resection. We've reviewed the most recent challenges and surveyed the potential strategies aimed at enhancing local treatment outcomes.
Collapse
Affiliation(s)
- Mario Chiariello
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
| | - Giovanni Inzalaco
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
| |
Collapse
|
11
|
Gao L, Ye Z, Peng S, Lei P, Song P, Li Z, Zhou L, Hua Q, Cheng L, Wei H, Liu J, Cai Q. BCL2A1 is associated with tumor-associated macrophages and unfavorable prognosis in human gliomas. Aging (Albany NY) 2023; 15:11611-11638. [PMID: 37889551 PMCID: PMC10637801 DOI: 10.18632/aging.205149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
B-cell lymphoma 2-related protein A1 (BCL2A1) is a member of the BCL-2 family. Previous studies have shown that BCL2A1 is closely related to the tumorigenesis and resistance to chemotherapy of multiple solid tumors, such as breast cancer. However, the expression pattern and potential biological function of BCL2A1 in glioma remain unknown. For the first time, we found that the expression of BCL2A1 was higher in human glioma tissues than in normal brain tissues (NBTs) in both public datasets and an in-house cohort. High BCL2A1 expression was associated with advanced WHO grade, IDH 1/2 wild type and the mesenchymal (ME) subtype, and its overexpression in glioma predicted resistance to temozolomide (TMZ) chemotherapy and unfavorable prognosis. In addition, Gene set enrichment analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that BCL2A1 was significantly correlated with the immune response and immune-related pathways, and BCL2A1 expression was positively correlated with microenvironmental parameters (immune, stromal, and ESTIMATE scores) and macrophage infiltration. Interestingly, bioinformatic prediction and immunohistochemical/immunofluorescence staining analysis revealed that BCL2A1 expression was obviously associated with the tumor-associated macrophages (TAMs) markers CD68 and CCL2. Notably, knockdown of BCL2A1 significantly inhibited cell proliferation of U87 and U251 in vitro, induced smaller tumor size and prolonged survival time of mice in vivo. Co-culture experiments of macrophages and GBM cells showed that BCL2A1 knockdown inhibited macrophage migration. Meanwhile, knockdown of BCL2A1 was associated with low expression of CD68 and CCL2 in intracranial xenograft model. This may suggest that BCL2A1 promotes the progression of glioma and influences the prognosis of patients by participating in TAMs infiltration. In conclusion, these findings suggest that BCL2A1 could serve as a promising prognostic indicator and immunotherapy target in gliomas.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shu Peng
- School of Nursing, Kunming Medical University, Kunming, China
| | - Pan Lei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ping Song
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuwei Hua
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hangyu Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|