1
|
Jee YM, Lee JY, Ryu T. Chronic Inflammation and Immune Dysregulation in Metabolic-Dysfunction-Associated Steatotic Liver Disease Progression: From Steatosis to Hepatocellular Carcinoma. Biomedicines 2025; 13:1260. [PMID: 40427086 PMCID: PMC12109540 DOI: 10.3390/biomedicines13051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Metabolic-dysfunction-associated steatotic liver disease (MASLD) progresses from hepatic steatosis to hepatocellular carcinoma (HCC) as a result of systemic immunometabolic dysfunction. This review summarizes the key roles of the innate and adaptive immune mechanisms driving hepatic injury, fibrogenesis, and carcinogenesis in MASLD. Methods: A comprehensive literature review was performed using PubMed to identify relevant published studies. Eligible articles included original research and clinical studies addressing immunological and metabolic mechanisms in MASLD, as well as emerging therapeutic strategies. Results: We highlight the roles of cytokine networks, the gut-liver axis, and immune cell reprogramming. Emerging therapeutic strategies, including cytokine inhibitors, anti-fibrotic agents, metabolic modulators, and nutraceuticals, offer several indications for attenuating MASLD progression and reducing the prevalence of extrahepatic manifestations. Conclusions: Given the heterogeneity of MASLD, personalized combination-based approaches targeting both inflammation and metabolic stress are essential for effective disease management and the prevention of systemic complications.
Collapse
Affiliation(s)
- Young-Min Jee
- Department of Family Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
- Department of Family Medicine, Graduate School of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jeong-Yoon Lee
- Department of Neurology, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
- Department of Translational Medicine, Graduate School of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| |
Collapse
|
2
|
Mak KM, Shekhar AC, Ding SY. Neutrophil extracellular traps mediate pathophysiology of hepatic cells during liver injury. Anat Rec (Hoboken) 2025. [PMID: 40219700 DOI: 10.1002/ar.25673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Neutrophil extracellular traps (NETs) are web-like, bactericidal structures produced by neutrophils and are composed principally of extracellular DNA, histones, elastase, and myeloperoxidase, among other components. NET formation is an innate immune response that is beneficial for pathogen killing and clearance. However, excessive NET formation and clearance defects can lead to inflammation and induce damage to host organs. NETs are also implicated in the development of noninfectious inflammatory disorders, such as liver injury in chronic liver diseases. The liver parenchyma contains hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells. Each of these cells possesses unique structures and functions, and their interactions with NETs result in pathophysiological changes contributing to liver injury. This review updates the findings related to the modes of action and molecular mechanisms by which NETs modulate the pathophysiology of various hepatic cells and potentiate liver injury. The article also reviews the roles of NETs in hepatic ischemia reperfusion injury, hepatocellular carcinoma pathogenesis, and cancer metastasis. Last, we examine data to determine whether NETs induce crosstalk among various hepatic cells during liver injury and to identify future research directions.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena Y Ding
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Khan MAS, Song BJ, Wang X, Iqbal S, Szabo G, Chang SL. Neutrophil extracellular traps (NETs) and NETosis in alcohol-associated diseases: A systematic review. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:697-711. [PMID: 40091149 DOI: 10.1111/acer.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Heavy alcohol consumption is implicated in the alteration of the antimicrobial function of neutrophils, such as phagocytosis, chemotaxis, the formation of neutrophil extracellular traps (NETs), and the occurrence of NETosis. NETosis is an endogenous process of elimination of invading microbes, autoantibodies, and inflammatory elements such as danger-associated molecular patterns (DAMPs) and pathogen-associated patterns (PAMPs). However, both exaggeration and suppression of NETosis modulate normal physiological and metabolic processes by influencing events at the molecular and cellular levels. Recent research shows that binge alcohol consumption induces NETosis, leading to tissue damage and inflammation. Binge alcohol consumption, chronic alcohol intake, and alcohol use disorder (AUD) can affect immunity and often lead to alcohol-associated liver disease (ALD) and/or other organ damage. Alcohol can lead to detrimental consequences in multiple organs, including the brain, liver, pancreas, and gut. Gut-derived microbial substances, such as endotoxins in the circulation, induce systemic inflammation. Sterile danger signals from damaged cells, cytokines, and prostaglandins act as proinflammatory stimuli and are involved in multiple signaling pathways. The alcohol-induced proinflammatory cytokines chemoattract neutrophils, which interact and coordinate with other immune cells to exaggerate or suppress inflammation within the inflammatory milieu, depending on the alcohol effects. Several proteins, including different receptors, play important roles in the activation and formation of NETs as well as the initiation and execution of NETosis. This review article specifically gathers the current information on NETosis, its biological components, and signaling pathways relating to the formation of NETs and the occurrence of NETosis associated with ALD and AUD in multiorgans, specifically in the brain, liver, and gut. We also briefly describe various therapeutic strategies against AUD-associated NETosis in experimental models and human disease states.
Collapse
Affiliation(s)
- Mohammed A S Khan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shams Iqbal
- Department of Interventional Radiology and Center for System Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Harvard Medical School, Beth Israel Lahey Health and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
4
|
Teo JMN, Chen W, Ling GS. Neutrophil plasticity in liver diseases. J Leukoc Biol 2025; 117:qiae222. [PMID: 39383213 DOI: 10.1093/jleuko/qiae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024] Open
Abstract
The liver has critical digestive, metabolic, and immunosurveillance roles, which get disrupted during liver diseases such as viral hepatitis, fatty liver disease, and hepatocellular carcinoma. While previous research on the pathological development of these diseases has focused on liver-resident immune populations, such as Kupffer cells, infiltrating immune cells responding to pathogens and disease also play crucial roles. Neutrophils are one such key population contributing to hepatic inflammation and disease progression. Belonging to the initial waves of immune response to threats, neutrophils suppress bacterial and viral spread during acute infections and have homeostasis-restoring functions, whereas during chronic insults, they display their plastic nature by responding to the inflammatory environment and develop new phenotypes alongside longer life spans. This review summarizes the diversity in neutrophil function and subpopulations present at steady state, during liver disease, and during liver cancer.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Faculty Administration Wing, 21 Sassoon Road, Pokfulam, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, HK Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
5
|
Shrestha S, Jeon JH, Hong CW. Neutrophils in MASLD and MASH. BMB Rep 2025; 58:116-123. [PMID: 39757200 PMCID: PMC11955729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 01/07/2025] Open
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) and its progressive form, Metabolic Dysfunction Associated Steatohepatitis (MASH), represent significant health concerns associated with the metabolic syndrome. These conditions are characterized by excessive hepatic fat accumulation, inflammation, and potential progression to cirrhosis and hepatocellular carcinoma. Neutrophils are innate immune cells that play a pivotal role in the development of MASLD and MASH. They can infiltrate the hepatic microenvironment in response to inflammatory cytokines and damage associated molecular patterns (DAMPs) derived from the liver and exacerbate tissue damage by releasing of reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps (NETs). Moreover, neutrophils can disrupt the metabolism of hepatocytes through key factors such as neutrophil elastase (NE) and human neutrophil peptides-1 (HNP-1), leading to inflammation and fibrosis, while myeloperoxidase (MPO) and lipocalin (LCN2) are involved in inflammatory and fibrotic processes. In contrast, neutrophils contribute to liver protection and repair through mechanisms involving microRNA-223 and matrix metalloproteinase 9 (MMP9). This dual role of neutrophils highlights their significance in the pathogenesis of MASLD and MASH. This review summarizes current understanding from recent studies on the involvement of neutrophils in MASLD and MASH. Understanding complex roles of neutrophils within the liver's unique microenvironment offers insights into novel therapeutic strategies, emphasizing the need for further research to explore neutrophil-targeted interventions for managing MASLD and MASH. [BMB Reports 2025; 58(3): 116-123].
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
6
|
Zhu C, Cheng Y, Yang L, Lyu Y, Li J, Zhao P, Zhu Y, Xin X, Yin L. Notch1 siRNA and AMD3100 Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025; 13:486. [PMID: 40002899 PMCID: PMC11853639 DOI: 10.3390/biomedicines13020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background and Objectives: As a key mechanism of metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis, inflammation triggered by chronic liver injury and immune cells with macrophages enables MASLD to progress to an advanced stage with irreversible processes such as fibrosis, cell necrosis, and cancer in the liver. The complexity of MASLD, including crosstalk between multiple organs and the liver, makes developing a new drug for MASLD challenging, especially in single-drug therapy. It was reported that upregulation of Notch1 is closely associated with the function of pro-inflammatory macrophages. To leverage this signaling pathway in treating MASLD, we developed a combination therapy. Materials and Methods: We chose Notch1 siRNA (siNotch1) to block the Notch pathway so that phenotypic regulation and functional recovery can be achieved in macrophages, combining with small molecule drug AMD3100. AMD3100 can cut off the migration of inflammatory cells to the liver to impede the development of inflammation and inhibit the CXCL12/CXCR4 biological axis in liver fibrosis to protect against the activation of HSCs. Then, we investigated the efficacy of the combination therapy on resolving inflammation and MASLD. Results: We demonstrated that in liver cells, siNotch1 combined with AMD3100 not only directly modulated macrophages by downregulating multiple pathways downstream of Notch, exerting anti-inflammatory, anti-migration, and switch of macrophage phenotype, but also modulated macrophage phenotypes through inhibiting NET release. The restored macrophages further regulate HSC and neutrophils. In in vivo pharmacodynamic studies, combination therapy exhibits a superior therapeutical effect over monotherapy in MASLD models. Conclusions: These results constitute an siRNA therapeutical approach combined with a small molecule drug against inflammation and liver injury in MASLD, offering a promising therapeutic intervention for MASLD.
Collapse
Affiliation(s)
- Chunli Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yiheng Cheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Jingjing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Pengbo Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
8
|
Zhang Y, Zhang AH, Li RL, Li WJ, Liu Y, Li T. Association of neutrophil-to-lymphocyte ratio and risk of all-cause and cardiovascular mortality in adults with metabolic dysfunction-associated steatotic liver disease: a population-based cohort study. Front Med (Lausanne) 2024; 11:1499524. [PMID: 39722822 PMCID: PMC11669056 DOI: 10.3389/fmed.2024.1499524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background and objective Inflammation is key to metabolic dysfunction-associated steatotic liver disease (MASLD) development. Nevertheless, the correlation between the inflammatory marker, neutrophil-to-lymphocyte ratio (NLR), and the MASLD prognosis remains unclear. We aim to determine the link between NLR and mortality risk in MASLD. Methods The MASLD adult participants from the 1999-2018 National Health and Nutrition Examination Survey (NHANES) database were evaluated. Utilizing restricted cubic spline (RCS) analyses, as well as Cox proportional hazards (PH) models, the associations between NLR and all-cause mortality (ACM) and cardiovascular mortality (CVM) were analyzed in MASLD. Subgroup analyses and interaction tests were conducted to validate these associations. Moreover, we used sensitivity analyses to ascertain the robustness of the results. Results Through 115 months of median follow-up, 2,307 of the 16,859 participants with MASLD died, including 650 deaths from cardiovascular causes. RCS analyses showed positive linear associations between NLR and both ACM and CVM. In the multivariable-adjusted Cox PH model, a one-unit elevation in NLR was related to a hazard ratio (HR) of 1.16 (95% confidence interval [CI]: 1.12-1.21) for ACM and 1.21 (95% CI: 1.15-1.27) for CVM. Participants were classified into higher (≥ 2.88) and lower (< 2.88) NLR groups employing the maximally selected rank statistics. The higher NLR group had a significantly elevated ACM (HR 1.38, 95% CI: 1.23-1.55) and CVM (HR 1.64, 95% CI: 1.32-2.03) risk compared to the lower NLR group. The associations were consistent in subgroup analyses based on age, gender, BMI, hypertension, and diabetes, with no significant interaction between NLR and these characteristics. Sensitivity analyses affirmed the main outcome's robustness. Conclusion A raised NLR independently predicts escalated ACM and CVM in MASLD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ai-Hua Zhang
- Department of Hematology, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, China
| | - Rong-Li Li
- Department of Interventional Radiology, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, China
| | - Wen-Jun Li
- Department of Interventional Radiology, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, China
| | - Yun Liu
- Department of Hematology, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, China
| | - Teng Li
- Department of Interventional Radiology, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
9
|
Lyu X, Liu B, Li Y, Wang Y, Miskovsky J, Gaitanis M, Promrat K, Wu WC. Impact of Non-Alcoholic Fatty Liver Disease on Sepsis Inpatient Outcomes: A Nationwide Sample Analysis (2000-2019). J Clin Med 2024; 13:5737. [PMID: 39407795 PMCID: PMC11476451 DOI: 10.3390/jcm13195737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Patients with Non-Alcoholic Fatty Liver Disease (NAFLD) are reported to have an increased risk of developing severe infections, leading to hospitalizations with sepsis. However, data regarding the impact of comorbid NAFLD on in-hospital outcomes of patients with sepsis is scarce. Methods: This nationwide retrospective observational study using discharge data from the National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP), and Agency for Healthcare Research and Quality included 21,057,911 adult patients who were admitted to hospitals in the United States between 2000 and 2019 with a primary discharge diagnosis of sepsis. These patients were categorized according to the presence or absence of comorbid NAFLD. The twenty-year trend of nationwide NAFLD prevalence among sepsis inpatients was elucidated. Multivariable logistic regression analysis was used to analyze NAFLD's impact on sepsis outcomes. Results: In the twenty-year study period, the prevalence of NALFD among sepsis inpatients trended up from 1.2% in 2000 to 4.2% in 2019. Similar trends were observed in regional analysis. While overall sepsis mortality decreased, comorbid NAFLD in sepsis patients was consistently associated with a higher adjusted in-hospital all-cause mortality rate (adjusted odds ratio (OR), 1.19; 95% confidence interval (CI), 1.07-1.32), higher odds of developing septic shock, and higher likelihood of development of multi-organ dysfunction. Conclusions: Comorbid NAFLD in the stage of NASH or cirrhosis is associated with higher in-hospital all-cause mortality and worse clinical outcomes in sepsis inpatients. Addressing this rising epidemic will be of paramount importance to improve sepsis in-hospital outcomes.
Collapse
Affiliation(s)
- Xiuhong Lyu
- Department of Epidemiology, School of Public Health, Brown University, 121 South Main Street, Providence, RI 02903, USA;
- Department of Adult Medicine, Brockton Neighborhood Health Center, 63 Main Street, Brockton, MA 02301, USA
| | - Bolun Liu
- Department of Hospital Internal Medicine, Mayo Clinic Health System, 1025 Marsh Street, Mankato, MN 56001, USA;
| | - Yiting Li
- Division of Gastroenterology and Hepatology, University of New–Mexico Health Science Center, 2500 Marble Ave., Albuquerque, NM 87106, USA
| | - Yichen Wang
- Division of Hospital Medicine, The Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA;
| | - John Miskovsky
- Department of Internal Medicine, Roger Williams Medical Center, 825 Chalkstone Ave., Providence, RI 02908, USA;
| | - Melissa Gaitanis
- Department of Infectious Disease, Providence VA Medical Center, 830 Chalkstone Ave., Providence, RI 02903, USA;
| | - Kittichai Promrat
- Providence VA Medical Center, Section of Gastroenterology, 830 Chalkstone Ave., Providence, RI 02908, USA;
| | - Wen-Chih Wu
- Department of Medicine, Division of Cardiology, Warren Alpert School of Medicine, Brown University, 222 Richmond St, Providence, RI 02903, USA
- Department of Epidemiology, Brown University School of Public Health, 121 South Main Street, Providence, RI 02903, USA
- Center of Innovation for Long Term Services & Support, Veterans Affairs Medical Center, 830 Chalkstone Ave., Providence, RI 02908, USA
| |
Collapse
|
10
|
Liu S, Wang Y, Ying L, Li H, Zhang K, Liang N, Luo G, Xiao L. Quercetin Mitigates Lysophosphatidylcholine (LPC)-Induced Neutrophil Extracellular Traps (NETs) Formation through Inhibiting the P2X7R/P38MAPK/NOX2 Pathway. Int J Mol Sci 2024; 25:9411. [PMID: 39273358 PMCID: PMC11395007 DOI: 10.3390/ijms25179411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are three-dimensional reticular structures that release chromatin and cellular contents extracellularly upon neutrophil activation. As a novel effector mechanism of neutrophils, NETs possess the capacity to amplify localized inflammation and have been demonstrated to contribute to the exacerbation of various inflammatory diseases, including cardiovascular diseases and tumors. It is suggested that lysophosphatidylcholine (LPC), as the primary active component of oxidized low-density lipoprotein, represents a significant risk factor for various inflammatory diseases, such as cardiovascular diseases and neurodegenerative diseases. However, the specific mechanism of NETs formation induced by LPC remains unclear. Quercetin has garnered considerable attention due to its anti-inflammatory properties, serving as a prevalent flavonoid in daily diet. However, little is currently known about the underlying mechanisms by which quercetin inhibits NETs formation and alleviates associated diseases. In our study, we utilized LPC-treated primary rat neutrophils to establish an in vitro model of NETs formation, which was subsequently subjected to treatment with a combination of quercetin or relevant inhibitors/activators. Compared to the control group, the markers of NETs and the expression of P2X7R/P38MAPK/NOX2 pathway-associated proteins were significantly increased in cells treated with LPC alone. Quercetin intervention decreased the LPC-induced upregulation of the P2X7R/P38MAPK/NOX2 pathway and effectively reduced the expression of NETs markers. The results obtained using a P2X7R antagonist/activator and P38MAPK inhibitor/activator support these findings. In summary, quercetin reversed the upregulation of the LPC-induced P2X7R/P38MAPK/NOX2 pathway, further mitigating NETs formation. Our study investigated the potential mechanism of LPC-induced NETs formation, elucidated the inhibitory effect of quercetin on NETs formation, and offered new insights into the anti-inflammatory properties of quercetin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410013, China; (S.L.); (Y.W.); (L.Y.); (H.L.); (K.Z.); (N.L.)
| | - Lin Xiao
- Xiangya School of Public Health, Central South University, Changsha 410013, China; (S.L.); (Y.W.); (L.Y.); (H.L.); (K.Z.); (N.L.)
| |
Collapse
|
11
|
Minciuna I, Taru MG, Procopet B, Stefanescu H. The Interplay between Liver Sinusoidal Endothelial Cells, Platelets, and Neutrophil Extracellular Traps in the Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. J Clin Med 2024; 13:1406. [PMID: 38592258 PMCID: PMC10932189 DOI: 10.3390/jcm13051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a societal burden due to the lack of effective treatment and incomplete pathophysiology understanding. This review explores the intricate connections among liver sinusoidal endothelial cells (LSECs), platelets, neutrophil extracellular traps (NETs), and coagulation disruptions in MASLD pathogenesis. In MASLD's early stages, LSECs undergo capillarization and dysfunction due to excessive dietary macronutrients and gut-derived products. Capillarization leads to ischemic changes in hepatocytes, triggering pro-inflammatory responses in Kupffer cells (KCs) and activating hepatic stellate cells (HSCs). Capillarized LSECs show a pro-inflammatory phenotype through adhesion molecule overexpression, autophagy loss, and increased cytokines production. Platelet interaction favors leucocyte recruitment, NETs formation, and liver inflammatory foci. Liver fibrosis is facilitated by reduced nitric oxide, HSC activation, profibrogenic mediators, and increased angiogenesis. Moreover, platelet attachment, activation, α-granule cargo release, and NETs formation contribute to MASLD progression. Platelets foster fibrosis and microthrombosis, leading to parenchymal extinction and fibrotic healing. Additionally, platelets promote tumor growth, epithelial-mesenchymal transition, and tumor cell metastasis. MASLD's prothrombotic features are exacerbated by insulin resistance, diabetes, and obesity, manifesting as increased von Willebrand factor, platelet hyperaggregability, hypo-fibrinolysis, and a prothrombotic fibrin clot structure. Improving LSEC health and using antiplatelet treatment appear promising for preventing MASLD development and progression.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Madalina Gabriela Taru
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Procopet
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Horia Stefanescu
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
| |
Collapse
|
12
|
Guo Z, Wu Q, Xie P, Wang J, Lv W. Immunomodulation in non-alcoholic fatty liver disease: exploring mechanisms and applications. Front Immunol 2024; 15:1336493. [PMID: 38352880 PMCID: PMC10861763 DOI: 10.3389/fimmu.2024.1336493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) exhibits increased lipid enrichment in hepatocytes. The spectrum of this disease includes stages such as nonalcoholic simple fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), and liver fibrosis. Changes in lifestyle behaviors have been a major factor contributing to the increased cases of NAFLD patients globally. Therefore, it is imperative to explore the pathogenesis of NAFLD, identify therapeutic targets, and develop new strategies to improve the clinical management of the disease. Immunoregulation is a strategy through which the organism recognizes and eliminates antigenic foreign bodies to maintain physiological homeostasis. In this process, multiple factors, including immune cells, signaling molecules, and cytokines, play a role in governing the evolution of NAFLD. This review seeks to encapsulate the advancements in research regarding immune regulation in NAFLD, spanning from underlying mechanisms to practical applications.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinjuan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengfei Xie
- Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiuchong Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|