1
|
Chakraborty D, Singh R, Rajmani RS, Kumar S, Ringe RP, Varadarajan R. Stabilizing Prefusion SARS-CoV-2 Spike by Destabilizing the Postfusion Conformation. Vaccines (Basel) 2025; 13:315. [PMID: 40266205 PMCID: PMC11946859 DOI: 10.3390/vaccines13030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: As with many viral fusion proteins, the native conformation of SARS-CoV-2 Spike is metastable. Most COVID-19 vaccines utilize a stabilized Spike (Spike-2P) containing two proline substitutions, and subsequently, a further stabilized variant with four additional proline substitutions, Spike-6P, has been developed. In an alternative approach, we introduced two aspartic acid residues (2D) in the HR1 region of Spike at positions that are exposed and buried in the pre- and postfusion states, respectively, to destabilize the postfusion conformation. Methods: The recombinant protein constructs were expressed in a mammalian cell culture and characterized for their yield and antigenicity, and the formulations were then used to immunize hamsters. After two immunizations, the hamsters were challenged with live B.1.351 SARS-CoV-2 virus for an evaluation of the protective efficacy. Results: The introduction of the two aspartic acid mutations resulted in an approximately six-fold increase in expression, comparable to that in Spike-2P. When the 2D mutations were combined with the above four proline mutations (Spike-4P-2D), this led to a further three- to four-fold enhancement of protein expression, similar to that seen in Spike-6P. When formulated with the oil-in-water emulsion adjuvant Sepivac SWE, the 2P, 2D, 6P, and 4P-2D Spike variants all protected female hamsters against heterologous challenge with the B.1.351 SARS-CoV-2 virus and elicited high titers of neutralizing antibodies. Conclusions: We suggest that destabilization of the postfusion conformation through the introduction of charged amino acids at sites that are exposed in the pre- and buried in the postfusion conformation offers a general strategy to enhance the yield and stability of the native, prefusion conformation of viral surface proteins.
Collapse
Affiliation(s)
- Debajyoti Chakraborty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (D.C.); (R.S.R.)
| | - Randhir Singh
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India;
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (D.C.); (R.S.R.)
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India; (S.K.); (R.P.R.)
| | - Rajesh P. Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India; (S.K.); (R.P.R.)
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (D.C.); (R.S.R.)
| |
Collapse
|
2
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
3
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
4
|
Mittal N, Kumar S, Rajmani RS, Singh R, Lemoine C, Jakob V, Bj S, Jagannath N, Bhat M, Chakraborty D, Pandey S, Jory A, Sa SS, Kleanthous H, Dubois P, Ringe RP, Varadarajan R. Enhanced protective efficacy of a thermostable RBD-S2 vaccine formulation against SARS-CoV-2 and its variants. NPJ Vaccines 2023; 8:161. [PMID: 37880298 PMCID: PMC10600342 DOI: 10.1038/s41541-023-00755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
With the rapid emergence of variants of concern (VOC), the efficacy of currently licensed vaccines has reduced drastically. VOC mutations largely occur in the S1 subunit of Spike. The S2 subunit of SARS-CoV-2 is conserved and thus more likely to elicit broadly reactive immune responses that could improve protection. However, the contribution of the S2 subunit in improving the overall efficacy of vaccines remains unclear. Therefore, we designed, and evaluated the immunogenicity and protective potential of a stabilized SARS-CoV-2 Receptor Binding Domain (RBD) fused to a stabilized S2. Immunogens were expressed as soluble proteins with approximately fivefold higher purified yield than the Spike ectodomain and formulated along with Squalene-in-water emulsion (SWE) adjuvant. Immunization with S2 alone failed to elicit a neutralizing immune response, but significantly reduced lung viral titers in mice challenged with the heterologous Beta variant. In hamsters, SWE-formulated RS2 (a genetic fusion of stabilized RBD with S2) showed enhanced immunogenicity and efficacy relative to corresponding RBD and Spike formulations. Despite being based on the ancestral Wuhan strain of SARS-CoV-2, RS2 elicited broad neutralization, including against Omicron variants (BA.1, BA.5 and BF.7), and the clade 1a WIV-1 and SARS-CoV-1 strains. RS2 elicited sera showed enhanced competition with both S2 directed and RBD Class 4 directed broadly neutralizing antibodies, relative to RBD and Spike elicited sera. When lyophilized, RS2 retained antigenicity and immunogenicity even after incubation at 37 °C for a month. The data collectively suggest that the RS2 immunogen is a promising modality to combat SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Nidhi Mittal
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India
| | - Raju S Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Randhir Singh
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Céline Lemoine
- Vaccine Formulation Institute; Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Virginie Jakob
- Vaccine Formulation Institute; Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Sowrabha Bj
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Nayana Jagannath
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Madhuraj Bhat
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Debajyoti Chakraborty
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Suman Pandey
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Aurélie Jory
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Suba Soundarya Sa
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | | | - Patrice Dubois
- Vaccine Formulation Institute; Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Rajesh P Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India.
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|