1
|
Biddeci G, Spinelli G, Colomba P, Duro G, Anania M, Francofonte D, Di Blasi F. Fabry Disease and Inflammation: Potential Role of p65 iso5, an Isoform of the NF-κB Complex. Cells 2025; 14:230. [PMID: 39937021 PMCID: PMC11817417 DOI: 10.3390/cells14030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disease, caused by mutations in the GLA gene on the X chromosome, resulting in a deficiency of the lysosomal enzyme α-GAL. This leads to the progressive accumulation of Gb3 in cells, causing multi-systemic effects. FD has been classified as a subgroup of autoinflammatory diseases. NF-κB is a family of ubiquitous and inducible transcription factors that play critical roles in inflammation, in which the p65/p50 heterodimer is the most abundant. The glucocorticoid receptor (GR) represents the physiological antagonists in the inflammation process. A novel spliced variant of p65, named p65 iso5, which can bind the dexamethasone, enhancing GR activity, has been found. This study investigates the potential role of p65 iso5 in the inflammation of subjects with FD. We evaluated in peripheral blood mononuclear cells (PBMCs), from over 100 FD patients, the p65 iso5 mRNA level, and the protein expression. The results showed significantly lower p65 iso5 mRNA and protein expression levels compared to controls. These findings, along with the ability of p65 iso5 to bind dexamethasone and the regulation of the glucocorticoid response in the opposite way of p65, strongly suggest the involvement of p65 iso5 in the inflammatory response in FD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Di Blasi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.B.); (G.S.); (P.C.); (G.D.); (M.A.); (D.F.)
| |
Collapse
|
2
|
Simonaro CM, Yasuda M, Schuchman EH. Endocannabinoid receptor 2 is a potential biomarker and therapeutic target for the lysosomal storage disorders. J Inherit Metab Dis 2025; 48:e12813. [PMID: 39569490 PMCID: PMC11670223 DOI: 10.1002/jimd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Herein, we studied the expression of endocannabinoid receptor 2 (CB2R), a known inflammation mediator, in several lysosomal storage disorder (LSD) animal models and evaluated it as a potential biomarker and therapeutic target for these diseases. CB2R was highly elevated in the plasma of Farber disease and mucopolysaccharidosis (MPS) type IIIA mice, followed by Fabry disease and MPS type I mice. Mice with acid sphingomyelinase-deficient Niemann-Pick disease (ASMD) and rats with MPS type VI exhibited little or no plasma CB2R elevation. High-level expression of CB2R was also observed in tissues of Farber and MPS IIIA mice. Treatment of MPS IIIIA patient cells with CB2R agonists led to a reduction of CB2R and monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor that is elevated in this LSD. Treatment of MPS IIIA mice with one of these agonists (JWH133) led to a reduction of plasma and tissue CB2R and MCP-1, a reduction of glial fibrillary acidic protein (GFAP) in the brain, and an improvement in hanging test performance. JWH133 treatment of Farber disease mice also led to a reduction of MCP-1 in tissues and plasma, and treatment of these mice by enzyme replacement therapy (ERT) led to a reduction of plasma CB2R, indicating its potential to monitor treatment response. Overall, these findings suggest that CB2R should be further examined as a potential therapeutic target for the LSDs and may also be a useful biomarker to monitor the impact of therapies.
Collapse
Affiliation(s)
- Calogera M. Simonaro
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Makiko Yasuda
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Edward H. Schuchman
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
3
|
Xie WL, Li HH, Li D, Li JY, Deng AP. A real-world pharmacovigilance analysis for agalsidase beta: findings from the FDA adverse event reporting database. Expert Opin Drug Saf 2024:1-12. [PMID: 39707961 DOI: 10.1080/14740338.2024.2446429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Fabry disease (FD), an X-linked lysosomal disorder, is marked by a lack of alpha-galactosidase A (α-Gal A). Agalsidase beta, a recombinant form of α-Gal A, is fundamental to enzyme replacement therapy for FD but requires close monitoring for adverse events (AEs). RESEARCH DESIGN AND METHODS This study retrospectively analyzed the Food and Drug Administration Adverse Event Reporting System (FAERS) database for agalsidase beta-related AEs. Disproportionality analysis was used for data analysis. RESULTS A total of 7,611 AE reports for agalsidase beta were analyzed. The most common AEs included pyrexia, pain, chills, malaise, and nausea. Several system organ classes including Cardiac Disorders, General Disorders and Administration Site Conditions, and Vascular Disorders, showed positive signals. Subgroup analysis by gender revealed differences in AE reporting, with males exhibiting a higher reporting odds ratio for certain preferred terms such as Renal Transplant and Drug Specific Antibody Present. CONCLUSION The FAERS database analysis of agalsidase beta AEs identified a significant number of cardiovascular, renal, and cerebrovascular system-related reports. While agalsidase beta is generally well-tolerated, the study underscores the necessity for gender-specific treatment approaches due to the higher incidence of certain AEs in males.
Collapse
Affiliation(s)
- Wen-Long Xie
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Hong Li
- Department of Pharmacy, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Li
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju-Yi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Ping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Faro DC, Di Pino FL, Monte IP. Inflammation, Oxidative Stress, and Endothelial Dysfunction in the Pathogenesis of Vascular Damage: Unraveling Novel Cardiovascular Risk Factors in Fabry Disease. Int J Mol Sci 2024; 25:8273. [PMID: 39125842 PMCID: PMC11312754 DOI: 10.3390/ijms25158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Anderson-Fabry disease (AFD), a genetic disorder caused by mutations in the α-galactosidase-A (GLA) gene, disrupts lysosomal function, leading to vascular complications. The accumulation of globotriaosylceramide (Gb3) in arterial walls triggers upregulation of adhesion molecules, decreases endothelial nitric oxide synthesis, and induces reactive oxygen species production. This cascade results in fibrotic thickening, endothelial dysfunction, hypercontractility, vasospasm, and a pro-thrombotic phenotype. AFD patients display increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating heightened cardiovascular risk. Nailfold capillaroscopy (NFC) shows promise in diagnosing and monitoring microcirculatory disorders in AFD, though it remains underexplored. Morphological evidence of AFD as a storage disorder can be demonstrated through electron microscopy and immunodetection of Gb3. Secondary pathophysiological disturbances at cellular, tissue, and organ levels contribute to the clinical manifestations, with prominent lysosomal inclusions observed in vascular, cardiac, renal, and neuronal cells. Chronic accumulation of Gb3 represents a state of ongoing toxicity, leading to increased cell turnover, particularly in vascular endothelial cells. AFD-related vascular pathology includes increased renin-angiotensin system activation, endothelial dysfunction, and smooth muscle cell proliferation, resulting in IMT increase. Furthermore, microvascular alterations, such as atypical capillaries observed through NFC, suggest early microvascular involvement. This review aims to unravel the complex interplay between inflammation, oxidative stress, and endothelial dysfunction in AFD, highlighting the potential connections between metabolic disturbances, oxidative stress, inflammation, and fibrosis in vascular and cardiac complications. By exploring novel cardiovascular risk factors and potential diagnostic tools, we can advance our understanding of these mechanisms, which extend beyond sphingolipid accumulation to include other significant contributors to disease pathogenesis. This comprehensive approach can pave the way for innovative therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
| | | | - Ines Paola Monte
- Department of General Surgery and Medical-Surgical Specialties (CHIRMED), University of Catania, Via S. Sofia 78, 95100 Catania, Italy; (D.C.F.); (F.L.D.P.)
| |
Collapse
|
6
|
Issa W, Njeim R, Carrazco A, Burke GW, Mitrofanova A. Role of the Innate Immune Response in Glomerular Disease Pathogenesis: Focus on Podocytes. Cells 2024; 13:1157. [PMID: 38995008 PMCID: PMC11240682 DOI: 10.3390/cells13131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Accumulating evidence indicates that inflammatory and immunologic processes play a significant role in the development and progression of glomerular diseases. Podocytes, the terminally differentiated epithelial cells, are crucial for maintaining the integrity of the glomerular filtration barrier. Once injured, podocytes cannot regenerate, leading to progressive proteinuric glomerular diseases. However, emerging evidence suggests that podocytes not only maintain the glomerular filtration barrier and are important targets of immune responses but also exhibit many features of immune-like cells, where they are involved in the modulation of the activity of innate and adaptive immunity. This dual role of podocytes may lead to the discovery and development of new therapeutic targets for treating glomerular diseases. This review aims to provide an overview of the innate immunity mechanisms involved in podocyte injury and the progression of proteinuric glomerular diseases.
Collapse
Affiliation(s)
- Wadih Issa
- Department of Internal Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Arianna Carrazco
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W. Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Kurdi H, Lavalle L, Moon JCC, Hughes D. Inflammation in Fabry disease: stages, molecular pathways, and therapeutic implications. Front Cardiovasc Med 2024; 11:1420067. [PMID: 38932991 PMCID: PMC11199868 DOI: 10.3389/fcvm.2024.1420067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fabry disease, a multisystem X-linked disorder caused by mutations in the alpha-galactosidase gene. This leads to the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), culminating in various clinical signs and symptoms that significantly impact quality of life. Although treatments such as enzyme replacement, oral chaperone, and emerging therapies like gene therapy exist; delayed diagnosis often curtails their effectiveness. Our review highlights the importance of delineating the stages of inflammation in Fabry disease to enhance the timing and efficacy of diagnosis and interventions, particularly before the progression to fibrosis, where treatment options are less effective. Inflammation is emerging as an important aspect of the pathogenesis of Fabry disease. This is thought to be predominantly mediated by the innate immune response, with growing evidence pointing towards the potential involvement of adaptive immune mechanisms that remain poorly understood. Highlighted by the fact that Fabry disease shares immune profiles with systemic autoinflammatory diseases, blurring the distinctions between these disorders and highlighting the need for a nuanced understanding of immune dynamics. This insight is crucial for developing targeted therapies and improving the administration of current treatments like enzyme replacement. Moreover, our review discusses the complex interplay between these inflammatory processes and current treatments, such as the challenges posed by anti-drug antibodies. These antibodies can attenuate the effectiveness of therapies, necessitating more refined approaches to mitigate their impact. By advancing our understanding of the molecular changes, inflammatory mediators and causative factors that drive inflammation in Fabry disease, we aim to clarify their role in the disease's progression. This improved understanding will help us see how these processes fit into the current landscape of Fabry disease. Additionally, it will guide the development of more effective diagnostic and therapeutic approaches, ultimately improving patient care.
Collapse
Affiliation(s)
- Hibba Kurdi
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Lucia Lavalle
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| | - James C. C. Moon
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Derralynn Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| |
Collapse
|
8
|
Coelho-Ribeiro B, Silva HG, Sampaio-Marques B, Fraga AG, Azevedo O, Pedrosa J, Ludovico P. Inflammation and Exosomes in Fabry Disease Pathogenesis. Cells 2024; 13:654. [PMID: 38667269 PMCID: PMC11049543 DOI: 10.3390/cells13080654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Fabry Disease (FD) is one of the most prevalent lysosomal storage disorders, resulting from mutations in the GLA gene located on the X chromosome. This genetic mutation triggers glo-botriaosylceramide (Gb-3) buildup within lysosomes, ultimately impairing cellular functions. Given the role of lysosomes in immune cell physiology, FD has been suggested to have a profound impact on immunological responses. During the past years, research has been focusing on this topic, and pooled evidence strengthens the hypothesis that Gb-3 accumulation potentiates the production of pro-inflammatory mediators, revealing the existence of an acute inflammatory process in FD that possibly develops to a chronic state due to stimulus persistency. In parallel, extracellular vesicles (EVs) have gained attention due to their function as intercellular communicators. Considering EVs' capacity to convey cargo from parent to distant cells, they emerge as potential inflammatory intermediaries capable of transporting cytokines and other immunomodulatory molecules. In this review, we revisit the evidence underlying the association between FD and altered immune responses and explore the potential of EVs to function as inflammatory vehicles.
Collapse
Affiliation(s)
- Bruna Coelho-Ribeiro
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Helena G. Silva
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Olga Azevedo
- Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, 4835-044 Guimarães, Portugal;
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| |
Collapse
|
9
|
Rozenfeld P, Feriozzi S, Braun F. The role of tubular cells in the pathogenesis of Fabry nephropathy. Front Cardiovasc Med 2024; 11:1386042. [PMID: 38646152 PMCID: PMC11027898 DOI: 10.3389/fcvm.2024.1386042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
The pathophysiology of Fabry nephropathy (FN) is induced by galactosidase A deficiency with a chronic exposure of glycolipids to every lineage of renal cells. Tissue damage is attributed to the activation of molecular pathways, resulting in tissue fibrosis and chronic kidney disease. Podocytes have been the primary focus in clinical pathophysiological research because of the striking accumulation of large glycolipid deposits observable in histology. Yet, the tubular interstitium makes up a large portion of the whole organ, and therefore, its role must be further considered in pathogenic processes. In this review, we would like to propose Fabry tubulopathy and its ensuing functional effects as the first pathological signs and contributing factors to the development of FN. We will summarize and discuss the current literature regarding the role of tubular cells in Fabry kidney pathophysiology. Starting from clinical and histological evidence, we will highlight the data from animal models and cell cultures outlining the pathophysiological pathways associated with tubular interstitial injury causing renal fibrosis in Fabry nephropathy.
Collapse
Affiliation(s)
- Paula Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| | - Sandro Feriozzi
- Nephrology and Dialysis Unit, Belcolle Hospital, Viterbo, Italy
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|