1
|
Habib HM, Ismail R, Agami M, El-Yazbi AF. Exploring the impact of bioactive peptides from fermented Milk proteins: A review with emphasis on health implications and artificial intelligence integration. Food Chem 2025; 481:144047. [PMID: 40186917 DOI: 10.1016/j.foodchem.2025.144047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
This review explores the health benefits of bioactive peptides (BAPs) from fermented milk proteins, emphasizing the transformative role of artificial intelligence (AI) and machine learning (ML) in advancing this field. BAPs exhibit diverse biological activities, including antimicrobial, antihypertensive, antioxidant, and immunomodulatory effects, making them promising for functional foods and nutraceuticals. However, challenges such as stability, bioavailability, and cost-effective production remain. This review highlights how AI/ML-driven tools, including data mining, sequence analysis, and predictive modeling, revolutionize peptide discovery, optimize fermentation, and enable personalized nutrition. By accelerating the identification of novel peptides and enhancing production efficiency, AI/ML offers innovative solutions to overcome existing limitations. The integration of AI/ML not only improves research efficiency but also opens new avenues for personalized nutrition and therapeutic applications. This review underscores the potential of interdisciplinary collaboration to harness the benefits of BAPs fully, driving future advancements in functional foods and health promotion.
Collapse
Affiliation(s)
- Hosam M Habib
- Research & Innovation Hub, Alamein International University (AIU), Alamein City, Matrouh Governorate 5060310, Egypt.
| | - Rania Ismail
- Faculty of Computer Science & Engineering, Alamein International University (AIU), New Alamein City 5060310, Egypt
| | - Mahmoud Agami
- Research & Innovation Hub, Alamein International University (AIU), Alamein City, Matrouh Governorate 5060310, Egypt
| | - Ahmed F El-Yazbi
- Research & Innovation Hub, Alamein International University (AIU), Alamein City, Matrouh Governorate 5060310, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, 15, Egypt
| |
Collapse
|
2
|
Chang L, Ran K, Wu F, Tian Y, Wang Y, Liu L, Wu X, Ouyang X, Li B, Ba Z, Gou S, Zhong C, Liu H, Zhang Y, Ni J. A new short pH-responsive anticancer peptide derived by intramolecular charge shielding strategy. Eur J Med Chem 2025; 291:117662. [PMID: 40267874 DOI: 10.1016/j.ejmech.2025.117662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
The pH-responsive anticancer peptides (ACPs) have been regarded as a new generation of prospective antitumor candidates due to their selectivity. However, the successful utilizations have been hampered by their narrow therapeutic index, poor stability and long sequence. Here, a new type of short pH-responsive ACPs was constructed by smart intramolecular charge shielding in histidine-rich peptide LH. This design would not depend on the introduction of additional anionic binding peptide, which might be an effective method for appreciably shortening the sequence of pH-responsive ACPs while improving their safety and stability. As expected, 2E-K stood out from the acquired peptides as it exhibited a considerable pH-dependent antitumor activity concomitant with remarkably improved therapeutic selectivity (14.5-fold increase) and extended serum half-life (3.6-fold enhancement) compared to LH. Experimental results showed that acid-activated 2E-K could efficiently induce tumor cell death by rapid membrane damage. Notably, the in vivo experiments further confirmed its excellent antitumor efficacy and low toxicity when compared with PTX, which demonstrating its superiority for in vivo application. In conclusion, our work opened a new avenue for developing short pH-responsive ACPs as promising alternative drugs in cancer treatment.
Collapse
Affiliation(s)
- Linlin Chang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Kaixin Ran
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Fengzhan Wu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yali Tian
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuxia Wang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Linfeng Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, 999078, PR China.
| |
Collapse
|
3
|
Guo H, Xue S, Dong N, Zhang Y, Dai Y, Chen Y, Zhang S. Enhancing menaquinone-7 biosynthesis by optimized fermentation strategies and fed-batch cultivation of food-derived Bacillus subtilis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40411175 DOI: 10.1002/jsfa.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND Menaquinone-7 (MK-7), a type of vitamin K2 (VK2), is considered to be a health-promoting functional ingredient in the current recommended dietary supply. However, it is a challenge to isolate high-yield MK-7-producing strains with reasonable safety from natural food, which further limits their use as starter culture. RESULTS In this study, an MK-7 production strain derived from commercial natto with a yield of 2.33 ± 0.06 mg L-1, Bacillus subtilis 4-b4, was screened using a selective medium containing rotenone combined with a VK2 enzyme-linked immunosorbent assay kit, and high-performance liquid chromatography. This strain exhibited excellent safety with no hemolysis, excellent antioxidant activity, and sensitivity to antibiotics. Furthermore, its fermentation strategies (fermentation condition and the supply of key precursor substances) were optimized to improve MK-7 biosynthesis. As a result, the yield increased 3.31-fold, reaching 7.70 ± 0.24 mg L-1 at shake flask fermentation level. After scaling up through fed-batch fermentation, the yield further increased to 23.43 ± 0.41 mg L-1 in a 5 L bioreactor. CONCLUSION The current study developed a strain with good safety and antibiotic sensitivity for producing MK-7, and improved its biosynthesis through optimized fermentation strategies and scaling up the process, laying the foundation for the availability of biologically active MK-7 fermented food in the food industry. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Guo
- SKL of Marine FooSid Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Siyu Xue
- SKL of Marine FooSid Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Naihui Dong
- SKL of Marine FooSid Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yujiao Zhang
- SKL of Marine FooSid Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yiwei Dai
- SKL of Marine FooSid Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yingxi Chen
- SKL of Marine FooSid Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- SKL of Marine FooSid Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Li Q, Chao W, Qiu L. Therapeutic peptides: chemical strategies fortify peptides for enhanced disease treatment efficacy. Amino Acids 2025; 57:25. [PMID: 40338379 PMCID: PMC12062087 DOI: 10.1007/s00726-025-03454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Therapeutic peptides, as a unique form of medication composed of orderly arranged sequences of amino acids, are valued for their high affinity, specificity, low immunogenicity, and economical production costs. Currently, more than 100 peptides have already secured market approval. Over 150 are actively undergoing clinical trials, while an additional 400-600 are in the preclinical research stage. Despite this, their clinical application is limited by factors such as salt sensitivity, brief residence in the bloodstream, inadequate cellular uptake, and high structural flexibility. By employing suitable chemical methods to modify peptides, it is possible to regulate important physicochemical factors such as charge, hydrophobicity, conformation, amphiphilicity, and sequence that affect the physicochemical properties and biological activity of peptides. This can overcome the inherent deficiencies of peptides, enhance their pharmacokinetic properties and biological activity, and promote continuous progress in the field of research. A diverse array of modified peptides is currently being developed and investigated across numerous therapeutic fields. Drawing on the latest research, this review encapsulates the essential physicochemical factors and significant chemical modification strategies that influence the properties and biological activity of peptides as pharmaceuticals. It also assesses how physicochemical factors affect the application of peptide drugs in disease treatment and the effectiveness of chemical strategies in disease therapy. Concurrently, this review discusses the prospective advancements in therapeutic peptide development, with the goal of offering guidance for designing and optimizing therapeutic peptides and to delve deeper into the therapeutic potential of peptides for disease intervention.
Collapse
Affiliation(s)
- Qingmei Li
- Hezhou University, Hezhou, 542800, Guangxi, China
- Naval Medical University, Shanghai, 200433, China
| | - Wen Chao
- Naval Medical University, Shanghai, 200433, China
| | - Lijuan Qiu
- Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Tisci G, Rajsiglova L, Bibbo S, Ziccheddu G, Ricciardi E, Falvo E, De Laurenzi V, Sala G, Capone E, Colotti G, Arcovito A, Giacon N, Makovický P, Sushytskyi L, Lukac P, Vannucci L, Giacomini P, Ceci P. A first-in-class non-cytotoxic nanocarrier based on a recombinant human ferritin boosts targeted therapy, chemotherapy and immunotherapy. Int J Biol Macromol 2025; 309:142843. [PMID: 40187454 DOI: 10.1016/j.ijbiomac.2025.142843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
To address the challenge of drug accumulation and penetration at the tumor site(s), herein we describe a first-in-class nanocarrier containing 24 copies each of two bioactive peptides (BAPs) genetically fused in frame to the 24 N-termini of a human ferritin H-type construct, named THE-10. The two BAPs are specific for PD-L1 and integrin αVβ3/αVβ5 plus Neuropilin (iRGD) respectively, conferring immune checkpoint blockade and drug-internalization properties. In turn, the THE-10 backbone brings 48 BAPs contiguous for synergism, prolonged blood half-life, and release into the tumor microenvironment upon conditional cleavage of a metalloprotease-sensitive site. Predicted THE-10 multitasking activity was experimentally supported as follows. Size-exclusion chromatography and surface plasmon resonance demonstrated BAP cleavage/release and receptor binding (nanomolar KD). Live-cell/time-lapse imaging demonstrated 4-fold-increased internalization of naked therapeutic antibodies, mirrored by enhanced cytotoxicity of the corresponding Antibody-Drug Conjugate. Slight antitumor effects were observed in vivo by treating immune checkpoint-sensitive syngeneic mouse colorectal model with THE-10 alone. Drug boosting was instead considerable on colorectal and pancreatic tumor allografts when THE-10 was co-administered with both small and large chemotherapeutic agents, outperforming the original iRGD cyclic peptide. Thus, THE-10 may enhance target therapy, chemotherapy and immunotherapy altogether, e.g. it candidates as a multitasking, all-round, antineoplastic therapy booster.
Collapse
Affiliation(s)
- Giada Tisci
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Lenka Rajsiglova
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sandra Bibbo
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), Italy
| | - Giovanna Ziccheddu
- Translational Oncology Unit, IRCCS National Cancer Institute Regina Elena, Via Elio Chianesi 53, Rome, Italy
| | - Elena Ricciardi
- Translational Oncology Unit, IRCCS National Cancer Institute Regina Elena, Via Elio Chianesi 53, Rome, Italy
| | - Elisabetta Falvo
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), Italy.
| | - Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, Italy
| | - Peter Makovický
- Institute of Histology and Embryology, Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava-Vítkovice, Czech Republic
| | - Leonid Sushytskyi
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Pavol Lukac
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Patrizio Giacomini
- UOSD Medicina di Precisione in Senologia, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, Rome, Italy
| | - Pierpaolo Ceci
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy; Thena Biotech, Latina, Italy.
| |
Collapse
|
6
|
Ghavimi R, Mahmoudi S, Mohammadi M, Khodamoradi E, Jahanian-Najafabadi A. Exploring the potential of anticancer peptides as therapeutic agents for cancer treatment. Res Pharm Sci 2025; 20:165-187. [PMID: 40444161 PMCID: PMC12118774 DOI: 10.4103/rps.rps_75_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 06/02/2025] Open
Abstract
Despite great advances in cancer identification and treatment, malignancies remain the primary cause of high morbidity and mortality worldwide. The drawbacks of conventional chemotherapy, such as severe toxicity, lack of specificity related to actively dividing cells, and resistance, can warrant the urgent need to develop an alternative approach to treat this disease. To overcome the drawbacks, researchers are attempting to deliver drugs to the site of action (targeted delivery) or to identify drugs that specifically target tumor cells. In this regard, highly cationic and amphipathic antimicrobial peptides are attracting the attention of researchers due to their potent anticancer activity, low cost of manufacture, and, most critically, tumor-targeting activity. A growing number of documents have shown that some of the mentioned peptides exhibited a broad spectrum of cytotoxic activity against cancer cells but not normal mammalian cells entitled as anticancer peptides. Due to their solubility, low toxicity, strong tumor penetration, high selectivity, and ability to be used alone or in conjunction with other conventional medications, anticancer peptides have the potential to become very successful cancer treatments in the future. This review provided an overview of the studies concerning anticancer peptide classification, modes of action, and selectivity, and also summarized some of the anticancer peptides developed for targeting different types of malignancies. The role of in silico methods or artificial intelligence in the design and discovery of anticancer peptides was briefly explained. Additionally, the current review addressed challenges in utilizing anticancer peptides for cancer therapy and highlighted peptides currently undergoing clinical trials.
Collapse
Affiliation(s)
- Reza Ghavimi
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Baton Rouge, LA, United States
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, I.R. Iran
- CinnaGen Research and Production Co, Alborz, I.R. Iran
| | - Samira Mahmoudi
- Department of Biochemistry and Molecular Biology, LSU Health-Shreveport, Shreveport, Louisiana 71104, USA
| | - Mohsen Mohammadi
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Elahe Khodamoradi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Bioinformatics Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
7
|
Kairupan TS, Kapantow NH, Tallei TE, Niode NJ, Sanggelorang Y, Rotty LWA, Wungouw HIS, Kawengian SES, Fatimawali F, Maulydia NB. Mechanistic insights into the anticancer, anti-inflammatory, and antioxidant effects of yellowfin tuna collagen peptides using network pharmacology. NARRA J 2025; 5:e1185. [PMID: 40352189 PMCID: PMC12059822 DOI: 10.52225/narra.v5i1.1185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/23/2025] [Indexed: 05/14/2025]
Abstract
Marine-derived collagen peptides have been acknowledged for their therapeutic potential, especially in cancer therapy and inflammation management. The aim of this study was to investigate the molecular mechanisms that contribute to the anticancer, anti-inflammatory and antioxidant properties of yellowfin tuna collagen peptides (YFTCP) utilizing a network pharmacology approach. The YFTCP was extracted from the bones of yellowfin tuna (Thunnus albacares) and subsequently hydrolyzed with trypsin. Seventeen peptides were discovered using liquid chromatography in conjunction with high-resolution mass spectrometry (LC-HRMS). A network pharmacology method was utilized to investigate the interactions between the discovered peptides and their biological targets. Additionally, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to identify pertinent biological pathways involved in the anticancer, antioxidant, and anti-inflammatory effects of these peptides. GO analysis revealed key associations between YFTCP and critical cancer- and inflammation-related genes encoding proteins such as CCND1, SRC, AKT1, IL-1β, TNF, and PPARG, which exhibited significant interactions. These proteins are essential for the regulation of the cell cycle, the development of tumors, and the response to inflammatory stimuli. The KEGG analysis also revealed that YFTCP was involved in a number of critical pathways, such as endocrine resistance, cancer pathways, Kaposi sarcoma-associated herpesvirus infection, proteoglycans in cancer, and human cytomegalovirus infection. These findings highlight the potential use of YFTCP as a multifaceted therapeutic agent, indicating their role in regulating important biological pathways associated with cancer development and inflammation. This study provides new valuable insights into the pharmacological properties of YFTCP, paving the way for future studies and drug development focused on these bioactive peptides.
Collapse
Affiliation(s)
- Tara S. Kairupan
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sam Ratulangi, Manado, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Prof. Dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Nova H. Kapantow
- Department of Nutrition, Faculty of Medicine, Universitas Sam Ratulangi, Manado, Indonesia
| | - Trina E. Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado, Indonesia
- Department of Biology, Faculty of Medicine, Universitas Sam Ratulangi, Manado, Indonesia
| | - Nurdjannah J. Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sam Ratulangi, Manado, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Prof. Dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Yulianty Sanggelorang
- Public Health Science Study Program, Faculty of Public Health, Universitas Sam Ratulangi, Manado, Indonesia
| | - Linda WA. Rotty
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi, Manado, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Prof. Dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Herlina IS. Wungouw
- Department of Physiology, Faculty of Medicine, Universitas Sam Ratulangi, Manado, Indonesia
| | - Shirley ES. Kawengian
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sam Ratulangi, Manado, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Prof. Dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Fatimawali Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado, Indonesia
| | - Nur B. Maulydia
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
8
|
Rinaldi R, Laurino S, Salvia R, Russi S, De Stefano F, Galasso R, Sgambato A, Scieuzo C, Falco G, Falabella P. Biological Activity of Peptide Fraction Derived from Hermetia illucens L. (Diptera: Stratiomyidae) Larvae Haemolymph on Gastric Cancer Cells. Int J Mol Sci 2025; 26:1885. [PMID: 40076512 PMCID: PMC11899352 DOI: 10.3390/ijms26051885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide, characterised by poor prognosis and limited responsiveness to chemotherapy. There is a need for new and more effective anticancer agents. Antimicrobial peptides (AMPs) represent a promising class of biomolecules for this purpose. Naturally occurring in the innate immune system, these peptides can also exert cytotoxic effects against cancer cells, earning them the designation of "anticancer peptides" (ACPs). They have the potential to be a viable support for current chemotherapy schedules due to their selectivity against cancer cells and minor propensity to induce chemoresistance in cells. Insects are an excellent source of AMPs. Among them, due to its ability to thrive in hostile and microorganism-rich environments, we isolated a peptide fraction from Hermetia illucens L. (Diptera: Stratiomyidae) haemolymph to evaluate a possible anticancer activity. We tested Peptide Fractions (PFs) against AGS and KATO III gastric cancer cell lines. Data obtained indicated that PFs, especially those resulting from Escherichia coli and Micrococcus flavus infection (to boost immune response), were able to inhibit tumour cell growth by inducing apoptosis or cell cycle arrest in a cell line-specific manner. These results support further investigation into the use of antimicrobial peptides produced from insects as possible anticancer agents.
Collapse
Affiliation(s)
- Roberta Rinaldi
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
| | - Simona Laurino
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Sabino Russi
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Federica De Stefano
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
| | - Rocco Galasso
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00136 Rome, Italy
| | - Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
9
|
Chowdhury A, Shrestha P, Jois SD. Molecular Chimera in Cancer Drug Discovery: Beyond Antibody Therapy, Designing Grafted Stable Peptides Targeting Cancer. Int J Pept Res Ther 2025; 31:38. [PMID: 39974747 PMCID: PMC11832722 DOI: 10.1007/s10989-025-10690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 02/21/2025]
Abstract
Background Several cancer therapies are being developed, and given the variability of different cancer types, the goal of these therapies is to remove the invasive tumor from the body, kill the cancer cells, or else retard the growth. These include chemotherapeutic agents and targeted therapy using small molecules and antibodies. However, antibodies can generate an immune response upon repeated administration, and producing antibodies could be expensive. Purpose The purpose of this review is to describe different therapeutic approaches utilized for cancer therapy, the current therapeutic approaches, and their limitations. As a novel strategy to combat cancer, designing new stable peptide scaffolds such as cyclotides and sunflower trypsin inhibitors (SFTI) is described. Results Stable peptides that can target proteins can be used as therapeutic agents. Here, we review the utilization and amalgamation of plant-based peptides with biological epitopes in designing molecules called "Molecular Chimeras" using a grafted peptide strategy. These cyclic peptides can bind to target receptors or modulate protein-protein interactions as they bind with high affinity and selectivity. Grafted peptides also possess better serum stability owing to the head-to-tail cyclization and other structural modifications. Conclusion Stable cyclic peptides outweigh the other biologicals in terms of stability and manufacturing process. Peptides and peptidomimetics can be used as therapeutic agents, and these molecules provide alternatives for biologicals and small molecule inhibitors as drugs.
Collapse
Affiliation(s)
- Arpan Chowdhury
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| | - Prajesh Shrestha
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| |
Collapse
|
10
|
Praseatsook K, Vachiraarunwong A, Taya S, Setthaya P, Sato K, Wanibuchi H, Wongpoomchai R, Dejkriengkraikul P, Gi M, Yodkeree S. Anticancer and Antioxidant Effects of Bioactive Peptides from Black Soldier Fly Larvae ( Hermetia illucens). Nutrients 2025; 17:645. [PMID: 40004973 PMCID: PMC11858422 DOI: 10.3390/nu17040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Protein hydrolysates from insects are recognized for their biological activities. Black soldier fly larvae (BSFL) have drawn attention due to their antioxidant protein hydrolysates. However, research on bioactive peptides derived from these hydrolysates, particularly their cancer chemopreventive potential, remains limited. This study aims to evaluate the antioxidant, anti-inflammatory, antimutagenic, and anticancer activities of BSFL-derived bioactive peptides and explore the molecular mechanisms. METHODS Alkali-soluble BSFL protein (ASBP) was extracted and hydrolyzed using Alcalase and bromelain under optimized conditions. Antioxidant activity was assessed via FRAP, ABTS, and DPPH assays. The hydrolysate with the highest antioxidant activity was fractionated into molecular weight (MW) groups (>30, 10, and <3 kDa). The bioactivity of fractionated peptides was evaluated through antioxidant, anti-inflammatory (nitric oxide production in RAW 264.7 cells), antimutagenic (Ames test), and anticancer (CCK-8 assay on HCT 116, COLO205, Cw-2, and Caco-2 cells) assays. Mechanistic insights were obtained via microarray and Western blot analyses. Peptides were identified by LC-MS/MS. RESULTS The ASBP-Alcalase hydrolysate (ASBP-AH) showed optimal antioxidant activity at 3% (w/w) for 4 h. The ASBP-AH 30 (MW > 30 kDa) fraction exhibited the highest antioxidant capacity. In contrast, the ASBP-AH3 (MW < 3 kDa) fraction exhibited significant antimutagenic effects, reduced nitric oxide production, and decreased COLO205 cell viability. Treatment with ASBP-AH3 at its LC50 dose modulated the SKP2/p21/cyclin D1 pathways. Mostly peptides from ASBP-AH3 were composed of hydrophobic and charged amino acids. CONCLUSIONS BSFL-derived bioactive peptides exhibit potential as multifunctional agents for cancer chemoprevention. In vivo studies are required to explore their clinical applications.
Collapse
Affiliation(s)
- Kwanchanok Praseatsook
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.P.); (R.W.); (P.D.)
| | - Arpamas Vachiraarunwong
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan; (A.V.); (H.W.)
| | - Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Phatthawin Setthaya
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Hideki Wanibuchi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan; (A.V.); (H.W.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.P.); (R.W.); (P.D.)
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.P.); (R.W.); (P.D.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan; (A.V.); (H.W.)
| | - Supachai Yodkeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.P.); (R.W.); (P.D.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Wang L, Wang L, Liu X, Lin X, Fei T, Zhang W. Seaweeds-derived proteins and peptides: preparation, virtual screening, health-promoting effects, and industry applications. Crit Rev Food Sci Nutr 2025:1-28. [PMID: 39812419 DOI: 10.1080/10408398.2025.2449596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Seaweed, a promising source of nutritional proteins, including protein hydrolysates, bioactive peptides, phycobiliproteins, and lectins with multi-biological activities. Seaweeds-derived proteins and peptides have attracted increasing interest for their potential applications in dietary supplements, functional foods, and pharmaceuticals industries. This work aims to comprehensively review the preparation methods and virtual screening strategies for seaweed-derived functional peptides. Additionally, it elucidates their diverse biological activities, mechanisms of action, and industrial applications. Enzymatic hydrolysis appears as the most effective method for preparing functional peptides from seaweeds. Computational virtual screening has also proven to be a valuable strategy for assessing the nature of the peptides. Seaweeds-derived proteins and peptides offer numerous health benefits, including alleviation of oxidative stress, anti-diabetic, anti-hypertensive, anti-inflammatory, anti-obesity, anti-cancer, and anti-microbial activities. Studies indicate that proteins hydrolysates and peptides derived from seaweeds with low molecular weight and aromatic and/or hydrophobic amino acids are particularly significant in contributing to these diverse bio-activities. Furthermore, seaweeds-derived proteins and peptides hold great promise for industrial applications owing to the broad spectrum of bio-functional effects. They can be used as active ingredients in food products or pharmaceuticals for disease prevention and treatment, and as food preservatives, potentially with fewer side effects.
Collapse
Affiliation(s)
- Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| | - Lang Wang
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
| | - Xiaoze Liu
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| | - Tao Fei
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| |
Collapse
|
12
|
Ibrahem E, Osman A, Taha H, Abo El-Maati MF, Sitohy B, Sitohy M. Anticarcinogenic cationic peptides derived from tryptic hydrolysis of β-lactoglobulin. Front Mol Biosci 2025; 11:1444457. [PMID: 39866644 PMCID: PMC11757936 DOI: 10.3389/fmolb.2024.1444457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction This study investigated the tryptic hydrolysis of β-lactoglobulin (BLG) for 30, 60, 90, and 120 min at 1/200 E/S (enzyme/substrate ratio, w/w) to prepare potentially anticarcinogenic peptides. Methods The properties of hydrolysates were characterized, including degree of hydrolysis, free amino acids, SDS-PAGE, FTIR, and antioxidant activity employing DPPH-assay, β-carotene/linoleic acid, and FRAP assay. Results BLG tryptic hydrolysate produced after 60 min hydrolysis recorded the highest antioxidant activity, and LCMS analysis revealed 162 peptides of molecular masses ranging from 800 to 5671Da, most of them are of hydrophobic nature. Within the low-MW peptide group (24 peptides), there were nine hydrophobic basic (HB) and seven hydrophobic acidic (HA), representing 38% and 29%, respectively. The HB peptides may be responsible for the considerable biological activity of the hydrolysate. With dominant basic character supporting the carcinogenic activity of this hydrolysate. The in vitro anticancer activity against Mcf-7, Caco-2, and A-549 human cancer cell lines proliferation by MTT assay recorded IC50% at 42.8, 76.92, and 45.93 μg/mL, respectively. Treating each cell line with IC50% of the hydrolysate for 24 h increased the apoptosis by enhancing the expression of caspase-9 by 5.66, 7.97, and 3.28 folds over the untreated control and inhibited angiogenesis by reducing VEGFR-2 expression by about 56, 76, and 70%, respectively, indicating strong anticancer and antiangiogenic actions on human cancer cells. BLG tryptic hydrolysate may serve as a natural anticarcinogenic agent. The results of this study demonstrated that BLG hydrolysates have direct anticancer and antiangiogenic effects on human cancer cells. The chemical composition and characteristics of the BLG tryptic hydrolysate influence these biological and anticancer activities. The tryptic hydrolysates were generally effective against the three cancer cell lines studied (Mcf-7, Caco-2, and A-549). This effectiveness was assessed by measuring cell proliferation using the MTT assay and by evaluating their impact on angiogenesis through inhibition of VEGFR-2 activity. Discussion Future studies may focus on enhancing the anticarcinogenic effectiveness of the peptides by isolating and evaluating the most prominent individual peptide and varying the treatment conditions.
Collapse
Affiliation(s)
- Eman Ibrahem
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hefnawy Taha
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Hamdi M, Kilari BP, Mudgil P, Nirmal NP, Ojha S, Ayoub MA, Amin A, Maqsood S. Bioactive peptides with potential anticancer properties from various food protein sources: status of recent research, production technologies, and developments. Crit Rev Biotechnol 2025:1-22. [PMID: 39757011 DOI: 10.1080/07388551.2024.2435965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 01/07/2025]
Abstract
Recently, bioactive peptides, from natural resources, have attracted remarkable attention as nutraceutical treasures and the health benefits of their consumption have extensively been studied. Therapies based on bioactive peptides have been recognized as an innovative and promising alternative method for dangerous diseases such as cancer. Indeed, there has been enormous interest in nutraceuticals and bioactive-based chemopreventive molecules as a potential opportunity to manage chronic diseases, including cancer at different stages, rather than the traditionally used therapies. The relative safety and efficacy of these peptides in targeting only the tumor cells without affecting the normal cells make them attractive alternatives to existing pharmaceuticals for the treatment, management, and prevention of cancer, being able to act as potential physiological modulators of metabolism during their intestinal digestion. Novel bioactive peptides derived from food sources can be beneficial as anticancer nutraceuticals and provide a basis for the pharmaceutical development of food-derived bioactive peptides. Bioactive peptides can be generated through different protein hydrolysis methods and purified using advanced chromatographic techniques. Moreover, establishing bioactive peptides' efficacy and mechanism of action can provide alternative methods for cancer prevention and management. Most of the research on anticancer peptides is carried out on cell lines with very limited research being investigated in animal models or human clinical models. In this context, this review article comprehensively discusses anticancer peptides': production, isolation, therapeutic strategies, mechanism of action, and application in cancer therapy.
Collapse
Affiliation(s)
- Marwa Hamdi
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bhanu Priya Kilari
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Shreesh Ojha
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, United Arab Emirates
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
14
|
Bidram M, Ganjalikhany MR. Bioactive peptides from food science to pharmaceutical industries: Their mechanism of action, potential role in cancer treatment and available resources. Heliyon 2024; 10:e40563. [PMID: 39654719 PMCID: PMC11626046 DOI: 10.1016/j.heliyon.2024.e40563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is known as the main cause of mortality in the world, and every year, the rate of incidence and death due to cancer is increasing. Bioactive peptides are one of the novel therapeutic options that are considered a suitable alternative to toxic chemotherapy drugs because they limit side effects with their specific function. In fact, bioactive peptides are short amino acid sequences that obtain diverse physiological functions to maintain human health after being released from parent proteins. This group of biological molecules that can be isolated from different types of natural protein sources has attracted much attention in the field of pharmaceutical and functional foods production. The current article describes the therapeutic benefits of bioactive peptides and specifically and extensively reviews their role in cancer treatment, available sources for discovering anticancer peptides, mechanisms of action, production methods, and existing challenges.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
15
|
Cabral LGDS, de Oliveira CS, Oliveira VX, Alves RCB, Poyet JL, Maria DA. Antitumoral and Antiproliferative Potential of Synthetic Derivatives of Scorpion Peptide IsCT1 in an Oral Cavity Squamous Carcinoma Model. Molecules 2024; 29:4533. [PMID: 39407463 PMCID: PMC11478212 DOI: 10.3390/molecules29194533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/20/2024] Open
Abstract
The oral cavity is a frequent site for head and neck cancers, which rank as the sixth most common cancer globally, with a 5-year survival rate slightly over 50%. Current treatments are limited, and resistance to therapy remains a significant clinical obstacle. IsCT1, a membrane-active peptide derived from the venom of the scorpion Opisthacanthus madagascariensis, has shown antitumor effects in various cancer cell lines, including breast cancer and chronic myeloid leukemia. However, its hemolytic action limits its potential therapeutic use. This study aims to assess the antitumor and antiproliferative activities of synthetic peptides derived from IsCT1 (IsCT-P, AC-AFPK-IsCT1, AFPK-IsCT1, AC-KKK-IsCT1, and KKK-IsCT1) in the context of oral squamous cell carcinoma. We evaluated the cytotoxic effects of these peptides on tongue squamous cell carcinoma cells and normal cells, as well as their impact on cell cycle phases, the expression of proliferation markers, modulators of cell death pathways, and mitochondrial potential. Our results indicate that the IsCT1 derivatives IsCT-P and AC-AFPK-IsCT1 possess cytotoxic properties towards squamous cell carcinoma cells, reducing mitochondrial membrane potential and the proliferative index. The treatment of cancer cells with AC-AFPK-IsCT1 led to a positive modulation of pro-apoptotic markers p53 and caspases 3 and 8, a decrease in PCNA and Cyclin D1 expression, and cell cycle arrest in the S phase. Notably, contrary to the parental IsCT1 peptide, AC-AFPK-IsCT1 did not exhibit hemolytic activity or cytotoxicity towards normal cells. Therefore, AC-AFPK-IsCT1 might be a viable therapeutic option for head and neck cancer treatment.
Collapse
Affiliation(s)
- Laertty Garcia de Sousa Cabral
- Faculty of Medicine, University of Sao Paulo, Sao Paulo 05508-220, Brazil;
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, Brazil;
| | - Cyntia Silva de Oliveira
- Paulista School of Medicine, Postgraduate Program in Molecular Biology, Federal University of São Paulo, Sao Paulo 04044-020, Brazil; (C.S.d.O.); (V.X.O.J.)
| | - Vani Xavier Oliveira
- Paulista School of Medicine, Postgraduate Program in Molecular Biology, Federal University of São Paulo, Sao Paulo 04044-020, Brazil; (C.S.d.O.); (V.X.O.J.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09280-560, Brazil
| | | | - Jean-Luc Poyet
- INSERM UMRS976, Institut De Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Durvanei Augusto Maria
- Faculty of Medicine, University of Sao Paulo, Sao Paulo 05508-220, Brazil;
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, Brazil;
| |
Collapse
|
16
|
Sadek KM, Shib NA, Taher ES, Rashed F, Shukry M, Atia GA, Taymour N, El-Nablaway M, Ibrahim AM, Ramadan MM, Abdelkader A, Abdo M, Imbrea I, Pet E, Ali LS, Abdeen A. Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Front Pharmacol 2024; 15:1412245. [PMID: 39092234 PMCID: PMC11291246 DOI: 10.3389/fphar.2024.1412245] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naira A. Shib
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Elena Pet
- Department of Management and Rural Development, Faculty of Management and Rural Tourism, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
17
|
Kao HJ, Weng TH, Chen CH, Chen YC, Chi YH, Huang KY, Weng SL. Integrating In Silico and In Vitro Approaches to Identify Natural Peptides with Selective Cytotoxicity against Cancer Cells. Int J Mol Sci 2024; 25:6848. [PMID: 38999958 PMCID: PMC11240926 DOI: 10.3390/ijms25136848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Anticancer peptides (ACPs) are bioactive compounds known for their selective cytotoxicity against tumor cells via various mechanisms. Recent studies have demonstrated that in silico machine learning methods are effective in predicting peptides with anticancer activity. In this study, we collected and analyzed over a thousand experimentally verified ACPs, specifically targeting peptides derived from natural sources. We developed a precise prediction model based on their sequence and structural features, and the model's evaluation results suggest its strong predictive ability for anticancer activity. To enhance reliability, we integrated the results of this model with those from other available methods. In total, we identified 176 potential ACPs, some of which were synthesized and further evaluated using the MTT colorimetric assay. All of these putative ACPs exhibited significant anticancer effects and selective cytotoxicity against specific tumor cells. In summary, we present a strategy for identifying and characterizing natural peptides with selective cytotoxicity against cancer cells, which could serve as novel therapeutic agents. Our prediction model can effectively screen new molecules for potential anticancer activity, and the results from in vitro experiments provide compelling evidence of the candidates' anticancer effects and selective cytotoxicity.
Collapse
Affiliation(s)
- Hui-Ju Kao
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
- Department of Medical Research, Hsinchu Municipal MacKay Children's Hospital, Hsinchu City 300, Taiwan
| | - Tzu-Han Weng
- Department of Dermatology, MacKay Memorial Hospital, Taipei City 104, Taiwan
| | - Chia-Hung Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
- Department of Medical Research, Hsinchu Municipal MacKay Children's Hospital, Hsinchu City 300, Taiwan
| | - Yu-Chi Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
- Department of Medical Research, Hsinchu Municipal MacKay Children's Hospital, Hsinchu City 300, Taiwan
| | - Yu-Hsiang Chi
- National Center for High-Performance Computing, Hsinchu City 300, Taiwan
| | - Kai-Yao Huang
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
- Department of Medical Research, Hsinchu Municipal MacKay Children's Hospital, Hsinchu City 300, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
- Department of Obstetrics and Gynecology, Hsinchu Municipal MacKay Children's Hospital, Hsinchu City 300, Taiwan
| |
Collapse
|