1
|
Duménil C, Spitaler U, Rehermann G, Bianchi F, Favaro R, Castellan I, Schmidt S, Eisenstecken D, Becher PG, Angeli S. Yeast-based attract-and-kill strategies for Drosophila suzukii management without disrupting honey bee activity. PLoS One 2025; 20:e0323653. [PMID: 40388535 PMCID: PMC12088520 DOI: 10.1371/journal.pone.0323653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/12/2025] [Indexed: 05/21/2025] Open
Abstract
Attract-and-kill strategies are effective, sustainable pest control methods. Formulations combining the insecticide spinosad, at a lower dose than conventional methods, with the Drosophila-associated yeast Hanseniaspora uvarum have shown promising results. Recently, Saccharomycopsis vini was identified as the most attractive yeast for ovipositing females. In this study, the potential of S. vini for use in attract-and-kill formulations against D. suzukii was evaluated alongside H. uvarum. Behavioural assays demonstrated that D. suzukii preferred S. vini when both yeasts are simultaneously present in a close range setting but was attracted to both in long range attraction assays. In efficacy assays, S. vini and H. uvarum were equally efficient at reducing oviposition and increasing mortality in formulation with spinosad. Offering yeast formulations at the foraging sites of trained honey bees did not stimulate more feeding when compared to sugar syrup. The characterisation of the organic volatile compounds released from the cultures demonstrated that S. vini and H. uvarum were composed of overlapping as well as distinct chemicals. The antennally active compounds ethyl acetate and ethyl propanoate were abundant in the more attractive S. vini and H. uvarum, while the compounds 3-methyl-1-butanol and 2-methylthiolan-3-one were more abundant in the less attractive S. cerevisiae. These chemicals may be further studied as possible attractants or repellents for D. suzukii. We propose S. vini as a new yeast with potential for use in integrated pest management, with a distinctive volatile profile while maintaining a similar efficacy compared to H. uvarum against D. suzukii. Neither H. uvarum nor S. vini stimulated honey bee foraging behaviour, suggesting that both yeast-based attract-and-kill formulations pose a low non-target risk to honey bees.
Collapse
Affiliation(s)
- Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Urban Spitaler
- Institute for Plant Health, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Silvia Schmidt
- Institute for Plant Health, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Paul G. Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| |
Collapse
|
2
|
Brunner M, Favaro R, van Herk WG, Bogaerts P, Rubbmark OR, Angeli S, Traugott M. Olfactory preference in chemical host plant recognition by male and female click beetles and its implications for pest management. PEST MANAGEMENT SCIENCE 2025. [PMID: 40197761 DOI: 10.1002/ps.8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Plants emit volatile organic compounds (VOCs), which serve as critical cues for herbivorous insects to locate hosts for feeding and oviposition. Understanding how adults identify host plants is essential to develop pest management strategies, particularly for hemiedaphic insects like click beetles, the larvae of which are significant soil-dwelling pests. To investigate click beetle attraction towards plant VOCs and their relevance for oviposition, we tested the attractiveness of constitutive VOCs (emitted by intact plants) and damage-induced VOCs (released by chopped plants) from 11 plant species to male and female Agriotes sputator beetles. RESULTS Agriotes sputator beetles exhibit plant species-specific olfactory preferences, which are influenced by beetle sex and female maturity and differ between constitutive and damage-induced VOCs. Female beetles showed the greatest attraction to buckwheat VOCs, especially during their main oviposition period, whereas males were more attracted to clover and ryegrass. EAG recordings show strong female antennal responses to ryegrass, carrot, maize, wild carrot, barley, and buckwheat VOCs, while male antennae responded significantly only to peas. Antennae from female beetles show overall stronger responses to constitutive VOCs than those of males (P = 0.02). CONCLUSION These findings facilitate the development of new approaches for Agriotes pest management. Understanding preferred plant VOCs aids in identifying attractive semiochemicals that can be used for monitoring female beetles. Additionally, recognizing attractive plants aids wireworm management by either avoiding them in crop rotations before sensitive crops (thus reducing oviposition) or by attracting beetles to specific areas where they can be targeted by control measures. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Brunner
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Riccardo Favaro
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Innsbruck, Austria
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Willem G van Herk
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada
| | - Paige Bogaerts
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada
| | | | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Michael Traugott
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Paoli M, Giurfa M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur J Neurosci 2024; 60:5927-5948. [PMID: 39258341 DOI: 10.1111/ejn.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Neonicotinoids represent over a quarter of the global pesticide market. Research on their environmental impact has revealed their adverse effect on the cognitive functions of pollinators, in particular of bees. Cognitive impairments, mostly revealed by behavioural studies, are the phenotypic expression of an alteration in the underlying neural circuits, a matter deserving greater attention. Here, we reviewed studies on the impact of field-relevant doses of neonicotinoids on the neurophysiology and neurodevelopment of bees. In particular, we focus on their olfactory system as much knowledge has been gained on the different brain areas that participate in odour processing. Recent studies have revealed the detrimental effects of neonicotinoids at multiple levels of the olfactory system, including modulation of odorant-induced activity in olfactory sensory neurons, diminished neural responses in the antennal lobe (the first olfactory processing centre) and abnormal development of the neural connectivity within the mushroom bodies (central neuropils involved in multisensory integration, learning and memory storage, among others). Given the importance of olfactory perception for multiple aspects of bee biology, the reported disruption of the olfactory circuit, which can occur even upon exposure to sublethal doses of neonicotinoids, has severe consequences at both individual and colony levels. Moreover, the effects reported for a multimodal structure such as the mushroom bodies indicate that neonicotinoids' impact translates to other sensory domains. Assessing the impact of field-relevant doses of pesticides on bee neurophysiology is crucial for understanding how neonicotinoids influence their behaviour in ecological contexts and for defining effective and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
| | - Martin Giurfa
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Favaro R, Garrido PM, Bruno D, Braglia C, Alberoni D, Baffoni L, Tettamanti G, Porrini MP, Di Gioia D, Angeli S. Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167277. [PMID: 37741399 DOI: 10.1016/j.scitotenv.2023.167277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Fungicides, insecticides and herbicides are widely used in agriculture to counteract pathogens and pests. Several of these molecules are toxic to non-target organisms such as pollinators and their lethal dose can be lowered if applied as a mixture. They can cause large and unpredictable problems, spanning from behavioural changes to alterations in the gut. The present work aimed at understanding the synergistic effects on honeybees of a combined in-hive exposure to sub-lethal doses of the insecticide thiacloprid and the fungicide penconazole. A multidisciplinary approach was used: honeybee mortality upon exposure was initially tested in cage, and the colonies development monitored. Morphological and ultrastructural analyses via light and transmission electron microscopy were carried out on the gut of larvae and forager honeybees. Moreover, the main pollen foraging sources and the fungal gut microbiota were studied using Next Generation Sequencing; the gut core bacterial taxa were quantified via qPCR. The mortality test showed a negative effect on honeybee survival when exposed to agrochemicals and their mixture in cage but not confirmed at colony level. Microscopy analyses on the gut epithelium indicated no appreciable morphological changes in larvae, newly emerged and forager honeybees exposed in field to the agrochemicals. Nevertheless, the gut microbial profile showed a reduction of Bombilactobacillus and an increase of Lactobacillus and total fungi upon mixture application. Finally, we highlighted for the first time a significant honeybee diet change after pesticide exposure: penconazole, alone or in mixture, significantly altered the pollen foraging preference, with honeybees preferring Hedera pollen. Overall, our in-hive results showed no severe effects upon administration of sublethal doses of thiacloprid and penconazole but indicate a change in honeybees foraging preference. A possible explanation can be that the different nutritional profile of the pollen may offer better recovery chances to honeybees.
Collapse
Affiliation(s)
- Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| | - Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Martin Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
5
|
Ke L, Chen X, Dai P, Liu YJ. Chronic larval exposure to thiacloprid impairs honeybee antennal selectivity, learning and memory performances. Front Physiol 2023; 14:1114488. [PMID: 37153228 PMCID: PMC10157261 DOI: 10.3389/fphys.2023.1114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
The use of agricultural neonicotinoid insecticides has sub-lethal chronic effects on bees that are more prevalent than acute toxicity. Among these insecticides, thiacloprid, a commonly used compound with low toxicity, has attracted significant attention due to its potential impact on the olfactory and learning abilities of honeybees. The effect of sub-lethal larval exposure to thiacloprid on the antennal activity of adult honeybees (Apis mellifera L.) is not yet fully understood. To address this knowledge gap, laboratory-based experiments were conducted in which honeybee larvae were administered thiacloprid (0.5 mg/L and 1.0 mg/L). Using electroantennography (EAG), the impacts of thiacloprid exposure on the antennal selectivity to common floral volatiles were evaluated. Additionally, the effects of sub-lethal exposure on odor-related learning and memory were also assessed. The results of this study reveal, for the first time, that sub-lethal larval exposure to thiacloprid decreased honeybee antenna EAG responses to floral scents, leading to increased olfactory selectivity in the high-dose (1.0 mg/L) group compared to the control group (0 mg/L vs. 1.0 mg/L: p = 0.042). The results also suggest that thiacloprid negatively affected odor-associated paired learning acquisition, as well as medium-term (1 h) (0 mg/L vs. 1.0 mg/L: p = 0.019) and long-term memory (24 h) (0 mg/L vs. 1.0 mg/L: p = 0.037) in adult honeybees. EAG amplitudes were dramatically reduced following R-linalool paired olfactory training (0 mg/L vs. 1.0 mg/L: p = 0.001; 0 mg/L vs. 0.5 mg/L: p = 0.027), while antennal activities only differed significantly in the control between paired and unpaired groups. Our results indicated that exposure to sub-lethal concentrations of thiacloprid may affect olfactory perception and learning and memory behaviors in honeybees. These findings have important implications for the safe use of agrochemicals in the environment.
Collapse
Affiliation(s)
- Li Ke
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiasang Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Strachecka A, Chobotow J, Kuszewska K, Olszewski K, Skowronek P, Bryś M, Paleolog J, Woyciechowski M. Morphology of Nasonov and Tergal Glands in Apis mellifera Rebels. INSECTS 2022; 13:401. [PMID: 35621739 PMCID: PMC9146257 DOI: 10.3390/insects13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Social insect societies are characterized by a high level of organization. This is made possible through a remarkably complex array of pheromonal signals produced by all members of the colony. The queen's pheromones signal the presence of a fertile female and induce daughter workers to remain sterile. However, the lack of the queen mandibular pheromone leads to the emergence of rebels, i.e., workers with increased reproductive potential. We suggested that the rebels would have developed tergal glands and reduced Nasonov glands, much like the queen but contrary to normal workers. Our guess turned out to be correct and may suggest that the rebels are more queen-like than previously thought. The tergal gland cells found in the rebels were numerous but they did not adhere as closely to one another as they did in queens. In the rebels, the number of Nasonov gland cells was very limited (from 38 to 53) and there were fat body trophocytes between the glandular cells. The diameters of the Nasonov gland cell nuclei were smaller in the rebels than in the normal workers. These results are important for understanding the formation of the different castes of Apis mellifera females, as well as the division of labor in social insect societies.
Collapse
Affiliation(s)
- Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Jacek Chobotow
- Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-400 Lublin, Poland;
| | - Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (K.K.); (M.W.)
| | - Krzysztof Olszewski
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Patrycja Skowronek
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Maciej Bryś
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Jerzy Paleolog
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Michał Woyciechowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (K.K.); (M.W.)
| |
Collapse
|