1
|
Andongma AA, Whitten MMA, Chofong GN, Dyson PJ. The thrips gut pH and implications for symbiont-mediated RNAi. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-7. [PMID: 40235299 DOI: 10.1017/s0007485325000240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The gut pH plays crucial roles in diet preference, habitat choice, insect fitness, and insect-microbial relationships. It significantly impacts enzyme activity efficiency, as well as the internalisation and efficacy of pesticides. Without a comprehensive understanding of the gut environment, potential pest management strategies cannot be fully optimised.This study investigates the gut pH of the globally invasive pest insect Western flower thrips Frankliniella occidentalis, and the effect its Gram-negative symbiotic gut bacterium BFo2 has on pH modulation. Indicator dyes were fed to F. occidentalis and the gut pH was found to vary between 6 and 7. In general, the larval and adult guts appear to have a pH of between 6 and 6.5; however, the posterior gut of some adults appears to be closer to 7. This almost neutral pH offers a favourable environment for the neutrophilic symbiotic BFo2. The ability of BFo2 isolates to buffer pH towards neutral was also observed during in vitro culture using broths at different pH values.This paper also discusses the implications of this gut environment on dsRNAi delivery. By laying the foundation for understanding how gut pH can be leveraged to enhance current pest management strategies, this study particularly benefits research aimed at optimising the delivery of lethal dsRNA through symbiont-mediated RNAi to Western flower thrips in pest management programs.
Collapse
Affiliation(s)
- Awawing A Andongma
- Applied Molecular Microbiology Group, Institute of Life Sciences, Swansea University School of Medicine, Swansea, UK
- Insect and Parasite Ecology Group, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Miranda M A Whitten
- Applied Molecular Microbiology Group, Institute of Life Sciences, Swansea University School of Medicine, Swansea, UK
| | - Gilbert N Chofong
- Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Paul J Dyson
- Applied Molecular Microbiology Group, Institute of Life Sciences, Swansea University School of Medicine, Swansea, UK
| |
Collapse
|
2
|
Shi B, He H, Zhao C, Lei C, Li J, Yan FM. Potential of Virus-Mediated RNAi of Insect Genes in Plants to Control Aphids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7716-7724. [PMID: 40110729 DOI: 10.1021/acs.jafc.4c09681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Expression of double-stranded RNAs (dsRNAs) in plants is an emerging strategy to efficiently control insects. RNA interference (RNAi)-mediated pest control takes advantage of double-stranded RNA that can suppress the expression of one or more insect genes that encode key proteins. Virus-induced gene silencing (VIGS) is a useful tool for plant expression of dsRNAs to control pests without altering the plant's genome. Trehalase (TRE) and chitin synthase (CHS) are very important in insects. In this study, we first demonstrated that spraying dsRNAs targeting CHS and TRE increased the mortality rate of the peach aphid Myzus persicae treated with the pathogenic fungus Metarhizium anisopliae. When dsRNAs targeting mpTRE and mpCHS were expressed in plants via VIGS, the expression of mpTRE and mpCHS was reduced in aphids, and their fertility and survival rates were decreased. These results indicate that VIGS-mediated RNA interference is a powerful approach to effectively control aphids, and aphids had a higher mortality rate when M. anisopliae was sprayed.
Collapse
Affiliation(s)
- Baozheng Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Caiyan Lei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng-Ming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Haider K, Abbas D, Galian J, Ghafar MA, Kabir K, Ijaz M, Hussain M, Khan KA, Ghramh HA, Raza A. The multifaceted roles of gut microbiota in insect physiology, metabolism, and environmental adaptation: implications for pest management strategies. World J Microbiol Biotechnol 2025; 41:75. [PMID: 40011281 DOI: 10.1007/s11274-025-04288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Similar to many other organisms, insects like Drosophila melanogaster, Hypothenemus hampei, and Cockroaches harbor diverse bacterial communities in their gastrointestinal systems. These bacteria, along with other microorganisms like fungi and archaea, are essential to the physiology of their insect hosts, forming intricate symbiotic relationships. These gut-associated microorganisms contribute to various vital functions, including digestion, nutrient absorption, immune regulation, and behavioral modulation. Notably, gut microbiota facilitates the breakdown of complex plant materials, synthesizes essential vitamins and amino acids, and detoxifies harmful substances, including pesticides. Furthermore, these microorganisms are integral to modulating host immune responses and enhancing disease resistance. This review examines the multifaceted roles of gut microbiota in insect physiology, with particular emphasis on their contributions to digestion, detoxification, reproduction, and environmental adaptability. The potential applications of gut microbiota in integrated pest management (IPM) are also explored. Understanding the microbial dynamics within insect pest species opens new avenues for pest control, including developing microbial biocontrol agents, microbial modifications to reduce pesticide resistance, and implementing microbiome-based genetic strategies. In particular, manipulating gut microbiota presents a promising approach to pest management, offering a sustainable and eco-friendly alternative to conventional chemical pesticides.
Collapse
Affiliation(s)
- Kamran Haider
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Dilawar Abbas
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jose Galian
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain.
- ArthropoTech S.L, Ed. Vitalis, 2ª Floor, Office 2.15, Campus de Espinardo, 30100, Murcia, Spain.
| | - Muhammad Adeel Ghafar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Bio Pesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kamil Kabir
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Ijaz
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- ArthropoTech S.L, Ed. Vitalis, 2ª Floor, Office 2.15, Campus de Espinardo, 30100, Murcia, Spain
| | - Mehboob Hussain
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Khalid Ali Khan
- Center of Bee Research and Its Products (CBRP), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Applied College, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and Its Products (CBRP), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abbas Raza
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
4
|
Han S, Akhtar MR, Xia X. Functions and regulations of insect gut bacteria. PEST MANAGEMENT SCIENCE 2024; 80:4828-4840. [PMID: 38884497 DOI: 10.1002/ps.8261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology. This review summarizes the primary functions of symbiotic bacteria in insect guts, such as enhancing insecticide resistance, facilitating food digestion, promoting detoxification, and regulating mating behavior and egg hatching. It also addresses some possible pathways of gut bacteria symbiont regulation governed by external habitats, physiological conditions and immunity of the host insect. This review provides solid foundations for further studies on novel theories, new technologies and practical applications of symbiotic bacteria in insect guts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| |
Collapse
|
5
|
Seman-Kamarulzaman AF, Pariamiskal FA, Azidi AN, Hassan M. A Review on Digestive System of Rhynchophorus ferrugineus as Potential Target to Develop Control Strategies. INSECTS 2023; 14:506. [PMID: 37367322 PMCID: PMC10299146 DOI: 10.3390/insects14060506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Rhynchophorus ferrugineus, commonly known as red palm weevil (RPW), is a high-risk insect pest that has become a threat to many important palm species. There are several dominant factors that lead to the successful infestation of RPW, including its stealthy lifestyle, highly chitinized mouthpart, and high fecundity rate. Due to that, millions of dollars of losses have been suffered by many countries invaded by RPW. Several methods have been designed to control its invasion, including the usage of insecticides, but many cause resistance and environmental pollution. Therefore, an environmentally friendly insecticide that targets specific systems or pathways in RPW is urgently needed. One of the potential targets is the digestive system of RPW, as it is the major interface between the insect and its plant host. The related knowledge of RPW's digestive system, such as the anatomy, microflora, transcriptomic analysis, and proteomic analysis, is important to understand its effects on RPW's survival. Several data from different omics regarding the digestive systems of RPW have been published in separate reports. Some of the potential targets have been reported to be inhibited by certain potential insecticides, while other targets have not yet been tested with any inhibitors. Hence, this review may lead to a better understanding on managing infestations of RPW using the system biology approach for its digestive system.
Collapse
Affiliation(s)
- Ahmad-Faris Seman-Kamarulzaman
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.-K.); (F.A.P.)
- Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Bandar Tun Abdul Razak Jengka 26400, Pahang, Malaysia
| | - Faizatul Atikah Pariamiskal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.-K.); (F.A.P.)
| | - Amiratul Nabihah Azidi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.-K.); (F.A.P.)
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.-K.); (F.A.P.)
| |
Collapse
|