1
|
Hwang Y, Shimamura Y, Tanaka J, Miura A, Sawada A, Sarmah H, Shimizu D, Kondo Y, Lee H, Martini F, Ninish Z, Yan KS, Yamada K, Mori M. FGF2 promotes the expansion of parietal mesothelial progenitor pools and inhibits BMP4-mediated smooth muscle cell differentiation. Front Cell Dev Biol 2024; 12:1387237. [PMID: 39376629 PMCID: PMC11456698 DOI: 10.3389/fcell.2024.1387237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/11/2024] [Indexed: 10/09/2024] Open
Abstract
Mesothelial cells, in the outermost layer of internal organs, are essential for both organ development and homeostasis. Although the parietal mesothelial cell is the primary origin of mesothelioma that may highjack developmental signaling, the signaling pathways that orchestrate developing parietal mesothelial progenitor cell (MPC) behaviors, such as MPC pool expansion, maturation, and differentiation, are poorly understood. To address it, we established a robust protocol for culturing WT1+ MPCs isolated from developing pig and mouse parietal thorax. Quantitative qPCR and immunostaining analyses revealed that BMP4 facilitated MPC differentiation into smooth muscle cells (SMCs). In contrast, FGF2 significantly promoted MPC progenitor pool expansion but blocked the SMC differentiation. BMP4 and FGF2 counterbalanced these effects, but FGF2 had the dominant impact in the long-term culture. A Wnt activator, CHIR99021, was pivotal in MPC maturation to CALB2+ mesothelial cells, while BMP4 or FGF2 was limited. Our results demonstrated central pathways critical for mesothelial cell behaviors.
Collapse
Affiliation(s)
- Youngmin Hwang
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Akihiro Miura
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Anri Sawada
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Hemanta Sarmah
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Dai Shimizu
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Yuri Kondo
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Hyeonjeong Lee
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Francesca Martini
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Zurab Ninish
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Kelley S. Yan
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Munemasa Mori
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
2
|
Nabeta R, Kanaya A, Shimada K, Matsuura K, Yoshimura A, Oyamada T, Azakami D, Furuya T, Uchide T. Characterization of mesothelin gene expression in dogs and overexpression in canine mesotheliomas. Front Vet Sci 2024; 11:1436621. [PMID: 39315086 PMCID: PMC11417096 DOI: 10.3389/fvets.2024.1436621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Canine mesotheliomas are uncommon malignant tumors typically detected late. Minimally invasive diagnostic biomarkers would facilitate diagnosis at earlier stages, thereby improving clinical outcomes. We hypothesized that mesothelin could be used as a reliable diagnostic biomarker for canine mesotheliomas since it has been used as a cancer biomarker for human mesothelioma. We aimed to explore and characterize mesothelin gene expression in dogs and assess its use as a diagnostic biomarker for canine mesotheliomas. Materials and methods We quantified expressed canine mesothelin transcripts via reverse transcription polymerase chain reaction (RT-PCR) and sequenced them using ribonucleic acid (RNA) extracted from a canine mesothelioma cell line. After confirming mesothelin expression, we assessed its levels in major organ tissues and compared them with those in the mesothelioma tissues using quantitative PCR (qPCR). Mesothelin overexpression in mesotheliomas was detected, and we further compared its levels using qPCR between mesotheliomas and non-mesotheliomas using tumor tissues and clinical sample effusions, confirming its significance as a diagnostic biomarker for canine mesothelioma. Results Mesothelin complementary deoxyribonucleic acid (cDNA) was amplified via RT-PCR, yielding a single band of expected upon DNA electrophoresis. Sequence analyses confirmed it as a predicted canine mesothelin transcript from the genome sequence database. Comparative sequence analysis of the deduced amino acid sequence of the expressed canine mesothelin demonstrated molecular signature similarities with the human mesothelin. However, the pre-sequence of canine mesothelin lacks the mature megakaryocyte potentiating factor (MPF) portion, which is typically cleaved post-translationally with furin. Mesothelin expression was quantified via qPCR revealing low levels in the mesothelial and lung tissues, with negligible expression in the other major organs. Canine mesothelin exhibited significantly higher expression in the canine mesotheliomas than in the noncancerous tissues. Moreover, analysis of clinical samples using qPCR demonstrated markedly elevated mesothelin expression in canine mesotheliomas compared to non-mesothelioma cases. Discussion and conclusion Canine mesothelin exhibits molecular and biological characteristics akin to human mesothelin. It could serve as a vital biomarker for diagnosing canine mesotheliomas, applicable to both tissue- and effusion-based samples.
Collapse
Affiliation(s)
- Rina Nabeta
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ami Kanaya
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Small Animal Clinical Science, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Aritada Yoshimura
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tomohiro Oyamada
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncoogy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
3
|
Active Loading of Pectin Hydrogels for Targeted Drug Delivery. Polymers (Basel) 2022; 15:polym15010092. [PMID: 36616442 PMCID: PMC9824191 DOI: 10.3390/polym15010092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels provide a promising method for the targeted delivery of protein drugs. Loading the protein drug into the hydrogel free volume can be challenging due to limited quantities of the drug (e.g., growth factor) and complex physicochemical properties of the hydrogel. Here, we investigated both passive and active loading of the heteropolysaccharide hydrogel pectin. Passive loading of glass phase pectin films was evaluated by contact angles and fractional thickness of the pectin films. Four pectin sources demonstrated mean contact angles of 88° with water and 122° with pleural fluid (p < 0.05). Slow kinetics and evaporative losses precluded passive loading. In contrast, active loading of the translucent pectin films was evaluated with the colorimetric tracer methylene blue. Active loading parameters were systematically varied and recorded at 500 points/s. The distribution of the tracer was evaluated by image morphometry. Active loading of the tracer into the pectin films required the optimization of probe velocity, compression force, and contact time. We conclude that active loading using pectin-specific conditions is required for the efficient embedding of low viscosity liquids into pectin hydrogels.
Collapse
|
4
|
Folliculin haploinsufficiency causes cellular dysfunction of pleural mesothelial cells. Sci Rep 2021; 11:10814. [PMID: 34031471 PMCID: PMC8144428 DOI: 10.1038/s41598-021-90184-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
Birt–Hogg–Dubé syndrome (BHDS), an autosomal dominant inheritance disease caused by folliculin (FLCN) mutations, is associated with lung cysts and spontaneous pneumothorax. The possibility of FLCN haploinsufficiency in pleural mesothelial cells (PMCs) contributing to development of pneumothorax has not yet been clarified. Electron microscopy revealed exposed intercellular boundaries between PMCs on visceral pleura and decreased electron density around the adherens junctions in BHDS. To characterize cellular function of PMCs in BHDS patients (BHDS-PMCs), during surgery for pneumothorax, we established the flow cytometry-based methods of isolating high-purity PMCs from pleural lavage fluid. BHDS-PMCs showed impaired cell attachment and a significant decrease in proliferation and migration, but a significant increase in apoptosis compared with PMCs from primary spontaneous pneumothorax (PSP) patients (PSP-PMCs). Microarray analysis using isolated PMCs revealed a significant alteration in the expression of genes belonging to Gene Ontology terms “cell–cell adhesion junction” and “cell adhesion molecule binding”. Gene set enrichment analysis demonstrated that CDH1, encoding E-cadherin, was identified in the down-regulated leading edge of a plot in BHDS-PMCs. AMPK and LKB1 activation were significantly impaired in BHDS-PMCs compared with PSP-PMCs. Our findings indicate that FLCN haploinsufficiency may affect the E-cadherin-LKB1-AMPK axis and lead to abnormal cellular function in BHDS-PMCs.
Collapse
|
5
|
Post-Surgical Peritoneal Scarring and Key Molecular Mechanisms. Biomolecules 2021; 11:biom11050692. [PMID: 34063089 PMCID: PMC8147932 DOI: 10.3390/biom11050692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Post-surgical adhesions are internal scar tissue and a major health and economic burden. Adhesions affect and involve the peritoneal lining of the abdominal cavity, which consists of a continuous mesothelial covering of the cavity wall and majority of internal organs. Our understanding of the full pathophysiology of adhesion formation is limited by the fact that the mechanisms regulating normal serosal repair and regeneration of the mesothelial layer are still being elucidated. Emerging evidence suggests that mesothelial cells do not simply form a passive barrier but perform a wide range of important regulatory functions including maintaining a healthy peritoneal homeostasis as well as orchestrating events leading to normal repair or pathological outcomes following injury. Here, we summarise recent advances in our understanding of serosal repair and adhesion formation with an emphasis on molecular mechanisms and novel gene expression signatures associated with these processes. We discuss changes in mesothelial biomolecular marker expression during peritoneal development, which may help, in part, to explain findings in adults from lineage tracing studies using experimental adhesion models. Lastly, we highlight examples of where local tissue specialisation may determine a particular response of peritoneal cells to injury.
Collapse
|
6
|
Mierzejewski M, Paplinska-Goryca M, Korczynski P, Krenke R. Primary human mesothelial cell culture in the evaluation of the inflammatory response to different sclerosing agents used for pleurodesis. Physiol Rep 2021; 9:e14846. [PMID: 33932124 PMCID: PMC8087983 DOI: 10.14814/phy2.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 11/24/2022] Open
Abstract
The mechanisms of chemical pleurodesis are still not fully explained. We aimed to evaluate the feasibility of using primary biopsy‐derived human mesothelial cells to establish an in vitro culture and to assess the response of pleural mesothelial cells to different sclerosing agents. Talc, povidone‐iodine, doxycycline, and TGF‐β were used at different doses to stimulate pleural mesothelial cells. After 6 and 24 h, mRNA expression of interleukin (IL)‐1β, IL‐6, IL‐8, TGF‐β, MCP‐1, IL‐17A, and MMP9 was measured in cultured cells, and the protein level of IL‐1β, IL‐6, and IL‐8 was measured in the culture supernatant. The most pronounced response was observed after talc exposure. It was expressed as an increase in IL‐1β concentration in culture supernatant after 24 h of higher talc dose stimulation compared to 6 h of stimulation (17.14 pg/ml [11.96–33.32 pg/ml] vs. 1.84 pg/ml [1.81–1.90 pg/ml], p = 0.02). We showed that culture pleural mesothelial cells isolated from pleura biopsy specimens is feasible. Inflammatory responses of mesothelial cells to different sclerosants were highly variable with no consistent pattern of mesothelium reaction neither in terms of different sclerosing agents nor in the time of the most significant reaction. We demonstrated that pro‐inflammatory mesothelial response includes an increase in IL‐1β mRNA expression and protein production. This may suggest the role of IL‐1β in the formation and maintenance of the inflammatory response during pleurodesis.
Collapse
Affiliation(s)
- Michal Mierzejewski
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Paplinska-Goryca
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Korczynski
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Eum HH, Kwon M, Ryu D, Jo A, Chung W, Kim N, Hong Y, Son DS, Kim ST, Lee J, Lee HO, Park WY. Tumor-promoting macrophages prevail in malignant ascites of advanced gastric cancer. Exp Mol Med 2020; 52:1976-1988. [PMID: 33277616 PMCID: PMC8080575 DOI: 10.1038/s12276-020-00538-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) patients develop malignant ascites as the disease progresses owing to peritoneal metastasis. GC patients with malignant ascites have a rapidly deteriorating clinical course with short survival following the onset of malignant ascites. Better optimized treatment strategies for this subset of patients are needed. To define the cellular characteristics of malignant ascites of GC, we used single-cell RNA sequencing to characterize tumor cells and tumor-associated macrophages (TAMs) from four samples of malignant ascites and one sample of cerebrospinal fluid. Reference transcriptomes for M1 and M2 macrophages were generated by in vitro differentiation of healthy blood-derived monocytes and applied to assess the inflammatory properties of TAMs. We analyzed 180 cells, including tumor cells, macrophages, and mesothelial cells. Dynamic exchange of tumor-promoting signals, including the CCL3–CCR1 or IL1B–IL1R2 interactions, suggests macrophage recruitment and anti-inflammatory tuning by tumor cells. By comparing these data with reference transcriptomes for M1-type and M2-type macrophages, we found noninflammatory characteristics in macrophages recovered from the malignant ascites of GC. Using public datasets, we demonstrated that the single-cell transcriptome-driven M2-specific signature was associated with poor prognosis in GC. Our data indicate that the anti-inflammatory characteristics of TAMs are controlled by tumor cells and present implications for treatment strategies for GC patients in which combination treatment targeting cancer cells and macrophages may have a reciprocal synergistic effect. New strategies for treating advanced gastric cancer could emerge from insights into the interactions between white blood cells called macrophages and tumor cells in fluid known as malignant ascites that accumulates in the abdomen. Researchers in Seoul, South Korea, led by Hae-Ock Lee at The Catholic University of Korea and Woong-Yang Park at the Samsung Medical Center compared macrophages from healthy subjects with those from gastric cancer ascites. They identified molecular signaling interactions between tumor cells and macrophages that recruited macrophages into the ascites and converted them into more anti-inflammatory forms. The macrophages were then able to promote the activities of the cancer cells. The results suggest that chemicals able to inhibit or deplete proteins now identified as involved in controlling these synergistic interactions could become a new class of therapeutic agents.
Collapse
Affiliation(s)
- Hye Hyeon Eum
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Minsuk Kwon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Daeun Ryu
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Areum Jo
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Woosung Chung
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea
| | - Dae-Soon Son
- School of Big Data Science, Data Science Convergence Research Center, Hallym University, Chuncheon, South Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae-Ock Lee
- Department of Biomedicine and Health Sciences, Graduate School of The Catholic University of Korea, Seoul, South Korea.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea. .,School of Big Data Science, Data Science Convergence Research Center, Hallym University, Chuncheon, South Korea. .,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| |
Collapse
|
8
|
Kienzle A, Walter S, von Roth P, Fuchs M, Winkler T, Müller M. High Rates of Aseptic Loosening After Revision Total Knee Arthroplasty for Periprosthetic Joint Infection. JB JS Open Access 2020; 5:JBJSOA-D-20-00026. [PMID: 32984749 PMCID: PMC7480970 DOI: 10.2106/jbjs.oa.20.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With increasing life expectancy, the demand for knee replacement is continuously rising. Despite the use of antibiotic prophylaxis and improved aseptic surgical techniques, periprosthetic joint infection (PJI) still occurs in 1% to 5% of patients after primary arthroplasty. An open question is the influence of PJI and resulting surgical procedures on the occurrence of long-term complications such as aseptic loosening. Patients needing multiple revision surgeries are especially at risk for decreases in bone mass and damage to the medullary cavity. Thus, we theorized that prior surgeries on the affected knee increase the risk of aseptic loosening in patients with PJI.
Collapse
Affiliation(s)
- Arne Kienzle
- Center for Musculoskeletal Surgery, Clinic for Orthopedics and Traumatology, Charité University Hospital Berlin, Berlin, Germany.,Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sandy Walter
- Center for Musculoskeletal Surgery, Clinic for Orthopedics and Traumatology, Charité University Hospital Berlin, Berlin, Germany
| | | | - Michael Fuchs
- RKU University Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Tobias Winkler
- Center for Musculoskeletal Surgery, Clinic for Orthopedics and Traumatology, Charité University Hospital Berlin, Berlin, Germany
| | - Michael Müller
- Center for Musculoskeletal Surgery, Clinic for Orthopedics and Traumatology, Charité University Hospital Berlin, Berlin, Germany
| |
Collapse
|
9
|
Clements D, Miller S, Johnson SR. Pulmonary Lymphangioleiomyomatosis originates in the pleural mesothelial cell population. Med Hypotheses 2020; 141:109703. [PMID: 32276237 DOI: 10.1016/j.mehy.2020.109703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a cystic lung disease mainly affecting women, in which degradation of the lung parenchyma is associated with a cell of unknown provenance, known as a LAM cell. LAM cells carry TSC2 mutations and can be identified in the lung parenchyma by their expression of both smooth muscle actin and antigens characteristic of melanocytes and melanocytic tumors. The nature of the cell-of-origin of LAM is controversial, and despite continued research effort remains elusive. Further, it has not been possible to culture pulmonary LAM cells in vitro, and current research relies on cells and animal models which may not recapitulate all features of the disease. We noted aberrant expression of melanoma antigens in pleural mesothelial cells in lung tissue from LAM patients, indicating that these cells could be the precursors of parenchymal LAM cells. We hypothesise that loss of tuberin function following TSC2 mutation in the mesothelial cell lineage gives rise to the cell-of-origin of pulmonary LAM (P-LAM), and of other associated conditions commonly noted in LAM patients. The unique properties of mesothelial cells provide a straightforward explanation of the diverse presentation of LAM.
Collapse
Affiliation(s)
- D Clements
- Division of Respiratory Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK.
| | - S Miller
- Division of Respiratory Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - S R Johnson
- Division of Respiratory Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; National Centre for Lymphangioleiomyomatosis, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Pruett N, Singh A, Shankar A, Schrump DS, Hoang CD. Normal mesothelial cell lines newly derived from human pleural biopsy explants. Am J Physiol Lung Cell Mol Physiol 2020; 319:L652-L660. [PMID: 32726133 DOI: 10.1152/ajplung.00141.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mesothelial cells are arranged as a monolayer on covering membranes that invest surfaces of body cavities like the pleura and peritoneum. Primary human mesothelial cell (HMC) cultures are needed for studying mesothelial cell homeostasis and developing disease models, such as wound healing or cancers. Remarkably, there is a paucity of useable HMC lines that are currently available that faithfully recapitulate normal in vivo phenotypic characteristics. Here, we present a strategy to recover HMC from human pleural tissue and to immortalize them for extended in vitro culturing. Human pleural membrane was harvested by minimally invasive surgical techniques. HMC were isolated using a two-step process combining explant cellular outgrowth from biopsy tissue and flow cytometry based on cell surface expression of cadherin-1 and CD71. Cell cultures were generated after lentiviral transfection with human telomerase. The new HMC cultures retain the same phenotypic traits and physiologic features as their in vivo counterparts, yet they can be adapted for short-term or long-term culture in large-scale in vitro experimentation. In particular, we generated a new HMC line harboring a germline mutation in breast cancer type-1-associated protein-1 (BAP1), a causal tumor suppressor gene, that could be instrumental to malignant mesothelioma research. Patient-specific, normal HMC may serve as novel discovery tools allowing more powerful research models of both normal physiology and disease processes. Our surgically driven approach leads to a limitless resource of novel mesothelial cell cultures.
Collapse
Affiliation(s)
- Nathanael Pruett
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ahjeetha Shankar
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David S Schrump
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chuong D Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|