1
|
Tejos-Bravo M, Cid D, Espinoza F, Rojas-Thomas F, Torres G, Cossio ML, Borzutzky A, Calvo M. Altered Sensory and Stress Responses in Atopic Dermatitis: Effects of Acute Stress on Lesional and Non-Lesional Skin. Exp Dermatol 2025; 34:e70083. [PMID: 40095276 DOI: 10.1111/exd.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Itch and pain are both mediated by small sensory fibres. Atopic dermatitis (AD) patients usually report stress-induced flares, but the impact of stress on sensory fibres in lesional and non-lesional skin remains inconclusive. This observational study assessed the effect of acute stress on sensory profiles in subjects with AD (n = 18) and healthy controls (HC, n = 21). Participants completed clinical and psychological questionnaires, and quantitative sensory testing was performed on lesional and non-lesional skin in AD and healthy skin in HC. Assessments were done before and after the Montreal Imaging Stress Task, an acute stress protocol. Stress responses were evaluated by anxiety ratings, heart rate (HR) and salivary cortisol (CORT). Cortisol binding globulin (CBG) was quantified as an indirect measure for circulating CORT. AD participants reported higher anxiety, depression and stress perception than HC. HR was similar between groups, but AD participants showed a blunted CORT response post-stress and lower CBG levels, suggesting altered stress regulation. Acute stress reduced cold sensitivity in HC and non-lesional AD skin but had no effect on lesions. These findings indicate that the effects of stress on small fibres depend on the condition of the skin and emphasise the sensory alterations experienced by AD patients.
Collapse
Affiliation(s)
- Macarena Tejos-Bravo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Dixon Cid
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Fernanda Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Felipe Rojas-Thomas
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Gustavo Torres
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Physical Therapy Career, Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Laura Cossio
- Department of Dermatology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arturo Borzutzky
- Department of Pediatric Infectious Diseases and Immunology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita Calvo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Department of anaesthesiology, Faculty of medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Shang D, Zhao S. Molecular mechanisms of obesity predisposes to atopic dermatitis. Front Immunol 2024; 15:1473105. [PMID: 39564133 PMCID: PMC11574713 DOI: 10.3389/fimmu.2024.1473105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Obesity is a prevalent metabolic disease that reduces bacterial diversity, colonizes the epidermis with lipophilic bacteria, and increases intestinal pro-inflammatory species, all of which lead to impaired epithelial barriers. Adipose tissue secretes immunomodulatory molecules, such as adipokines, leptin, and adiponectin, which alters the morphology of adipocytes and macrophages as well as modulates T cell differentiation and peripheral Th2-dominated immune responses. Atopic dermatitis (AD) and obesity have similar pathological manifestations, including inflammation as well as insulin and leptin resistance. This review examines the major mechanisms between obesity and AD, which focus on the effect on skin and gut microbiota, immune responses mediated by the toll like receptor (TLR) signaling pathway, and changes in cytokine levels (TNF-a, IL-6, IL-4, and IL13). Moreover, we describe the potential effects of adipokines on AD and finally mechanisms by which PPAR-γ suppresses and regulates type 2 immunity.
Collapse
Affiliation(s)
- Dajin Shang
- School of China Medical University, Shenyang, Liaoning, China
| | - Shengnan Zhao
- School of China Medical University, Shenyang, Liaoning, China
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Hadad R, Mandelli ML, Rankin KP, Toohey C, Sturm VE, Javandel S, Milicic A, Knudtson M, Allen IE, Hoffmann N, Friedberg A, Possin K, Valcour V, Miller BL. Itching Frequency and Neuroanatomic Correlates in Frontotemporal Lobar Degeneration. JAMA Neurol 2024; 81:977-984. [PMID: 39037825 PMCID: PMC11264090 DOI: 10.1001/jamaneurol.2024.2213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/24/2024] [Indexed: 07/24/2024]
Abstract
Importance Itching is common in geriatric populations and is frequently linked to dermatological or systemic conditions. Itching engages specific brain regions that are implicated in the pathogenesis of frontotemporal lobar degeneration spectrum disorders (FTLD-SD). Thus, itching of undetermined origin (IUO) may indicate the presence of a neurodegenerative process. Objective To compare the frequency of itching in FTLD-SD and Alzheimer disease (AD) and to determine the neuroanatomical underpinnings of IUO. Design, Setting, and Participants This case-control study evaluated data and brain magnetic resonance images (MRIs) for participants with FTLD-SD or AD. Participants of a research study on FTLD-SD at the University of California, San Francisco, Memory and Aging Center were evaluated from May 1, 2002, to December 31, 2021. The exposure group underwent structural brain MRI within 6 months of initial diagnosis. Research visit summaries were reviewed to validate qualitative details and accurately identify itching with undetermined origin (IUO). Exposures Symptoms suggestive of FTLD-SD or AD. Main Outcomes and Measures Frequency of itching in FTLD-SD and AD and neuroanatomic correlates. Results A total of 2091 research visit summaries were reviewed for 1112 patients exhibiting symptoms indicative of FTLD-SD or AD. From 795 records where itching or a related phrase was endorsed, 137 had IUO. A total of 454 participants were included in the study: 137 in the itching group (mean [SD] age, 62.7 [9.9] years; 74 [54%] females and 63 males [46%]) and 317 in the nonitching group (mean [SD] age, 60.7 [10.8] years; 154 [49%] females and 163 males [51%]). Groups were similar in age, sex, and disease severity. More frequent itching was found in FTLD-SD (95/248 patients [38%], of which 44 [46%] had behavioral variant frontotemporal dementia [bvFTD]) compared with the AD group (14/77 patients [18%]; P = .001). The odds of itching were 2.4 (95% CI, 1.48-3.97) times higher for FTLD-SD compared with all other cases of dementia. Compared with healthy controls, the group with IUO exhibited greater gray matter atrophy bilaterally in the amygdala, insula, precentral gyrus, and cingulum, as well as in the right frontal superior gyrus and thalamus. Among patients with bvFTD and itching vs bvFTD without itching, itching was associated with right-lateralized gray matter atrophy affecting the insula, thalamus, superior frontal gyrus, and cingulum. Conclusions and Relevance Among individuals with IUO, FTLD-SD was disproportionately represented compared with AD. In FTLD-SD, dysfunction in the right anterior insula and its connected regions, including the right precentral gyrus, cingulum, and bilateral amygdala, contribute to dysregulation of the itching-scratching networks, resulting in uncontrollable itching or skin picking. Awareness among physicians about the relationship between neurodegeneration and itching may help in the management of itch in older individuals. Further studies are needed to determine the best treatments for these symptoms in patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Rafi Hadad
- Stroke and Cognition Institute, Department of Neurology, Rambam Health Care Campus, Haifa, Israel
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
| | - Maria Luisa Mandelli
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Katherine P. Rankin
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Charlie Toohey
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Virginia E. Sturm
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences University of California, San Francisco
| | - Shireen Javandel
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Andjelika Milicic
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Marguerite Knudtson
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Isabel Elaine Allen
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Nathalia Hoffmann
- Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Adit Friedberg
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Katherine Possin
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Victor Valcour
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Bruce L. Miller
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| |
Collapse
|
4
|
Yosipovitch G, Kim B, Luger T, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Ständer S. Similarities and differences in peripheral itch and pain pathways in atopic dermatitis. J Allergy Clin Immunol 2024; 153:904-912. [PMID: 38103700 DOI: 10.1016/j.jaci.2023.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023]
Abstract
Atopic dermatitis (AD) is predominantly characterized by intense itching, but concomitant skin pain is experienced by more than 40% of patients. Patients with AD display considerable somatosensory aberrations, including increased nerve sensitivity to itch stimuli (hyperknesis), perception of itch from innocuous stimuli (alloknesis), or perception of pain from innocuous stimuli (allodynia). This review summarizes the current understanding of the similarities and differences in the peripheral mechanisms underlying itch and pain in AD. These distinct yet reciprocal sensations share many similarities in the peripheral nervous system, including common mediators (such as serotonin, endothelin-1, IL-33, and thymic stromal lymphopoietin), receptors (such as members of the G protein-coupled receptor family and Toll-like receptors), and ion channels for signal transduction (such as certain members of the transient receptor potential [TRP] cation channels). Itch-responding neurons are also sensitive to pain stimuli. However, there are distinct differences between itch and pain signaling. For example, specific immune responses are associated with pain (type 1 and/or type 3 cytokines and certain chemokine C-C [CCL2, CCL5] and C-X-C [CXCL] motif ligands) and itch (type 2 cytokines, including IL-31, and periostin). The TRP melastatin channels TRPM2 and TRPM3 have a role in pain but no known role in itch. Activation of μ-opioid receptors is known to alleviate pain but exacerbate itch. Understanding the connection between itch and pain mechanisms may offer new insights into the treatment of chronic pain and itch in AD.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St Louis, Mo
| | | | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, Mass
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | | | - Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany
| |
Collapse
|
5
|
Stepanenko T, Sofińska K, Wilkosz N, Dybas J, Wiercigroch E, Bulat K, Szczesny-Malysiak E, Skirlińska-Nosek K, Seweryn S, Chwiej J, Lipiec E, Marzec KM. Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) in label-free characterization of erythrocyte membranes and extracellular vesicles at the nano-scale and molecular level. Analyst 2024; 149:778-788. [PMID: 38109075 DOI: 10.1039/d3an01658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The manuscript presents the potential of surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) for label-free characterization of extracellular microvesicles (EVs) and their isolated membranes derived from red blood cells (RBCs) at the nanoscale and at the single-molecule level, providing detection of a few individual amino acids, protein and lipid membrane compartments. The study shows future directions for research, such as investigating the use of the mentioned techniques for the detection and diagnosis of diseases. We demonstrate that SERS and TERS are powerful techniques for identifying the biochemical composition of EVs and their membranes, allowing the detection of small molecules, lipids, and proteins. Furthermore, extracellular vesicles released from red blood cells (REVs) can be broadly classified into exosomes, microvesicles, and apoptotic bodies, based on their size and biogenesis pathways. Our study specifically focuses on microvesicles that range from 100 to 1000 nanometres in diameter, as presented in AFM images. Using SERS and TERS spectra obtained for REVs and their membranes, we were able to characterize the chemical and structural properties of microvesicle membranes with high sensitivity and specificity. This information may help better distinguish and categorize different types of EVs, leading to a better understanding of their functions and potential biomedical applications.
Collapse
Affiliation(s)
- Tetiana Stepanenko
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, National Synchrotron Radiation Centre SOLARIS, Czerwone Maki 98 Str., 30-392 Krakow, Poland
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Kamila Sofińska
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Natalia Wilkosz
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Ewelina Wiercigroch
- Jagiellonian Center of Innovation, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Katarzyna Bulat
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Sara Seweryn
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Joanna Chwiej
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Ewelina Lipiec
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Katarzyna M Marzec
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
- Łukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland.
| |
Collapse
|
6
|
Gerdle B, Dahlqvist Leinhard O, Lund E, Lundberg P, Forsgren MF, Ghafouri B. Pain and the biochemistry of fibromyalgia: patterns of peripheral cytokines and chemokines contribute to the differentiation between fibromyalgia and controls and are associated with pain, fat infiltration and content. FRONTIERS IN PAIN RESEARCH 2024; 5:1288024. [PMID: 38304854 PMCID: PMC10830731 DOI: 10.3389/fpain.2024.1288024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives This explorative study analyses interrelationships between peripheral compounds in saliva, plasma, and muscles together with body composition variables in healthy subjects and in fibromyalgia patients (FM). There is a need to better understand the extent cytokines and chemokines are associated with body composition and which cytokines and chemokines differentiate FM from healthy controls. Methods Here, 32 female FM patients and 30 age-matched female healthy controls underwent a clinical examination that included blood sample, saliva samples, and pain threshold tests. In addition, the subjects completed a health questionnaire. From these blood and saliva samples, a panel of 68 mainly cytokines and chemokines were determined. Microdialysis of trapezius and erector spinae muscles, phosphorus-31 magnetic resonance spectroscopy of erector spinae muscle, and whole-body magnetic resonance imaging for determination of body composition (BC)-i.e., muscle volume, fat content and infiltration-were also performed. Results After standardizing BC measurements to remove the confounding effect of Body Mass Index, fat infiltration and content are generally increased, and fat-free muscle volume is decreased in FM. Mainly saliva proteins differentiated FM from controls. When including all investigated compounds and BC variables, fat infiltration and content variables were most important, followed by muscle compounds and cytokines and chemokines from saliva and plasma. Various plasma proteins correlated positively with pain intensity in FM and negatively with pain thresholds in all subjects taken together. A mix of increased plasma cytokines and chemokines correlated with an index covering fat infiltration and content in different tissues. When muscle compounds were included in the analysis, several of these were identified as the most important regressors, although many plasma and saliva proteins remained significant. Discussion Peripheral factors were important for group differentiation between FM and controls. In saliva (but not plasma), cytokines and chemokines were significantly associated with group membership as saliva compounds were increased in FM. The importance of peripheral factors for group differentiation increased when muscle compounds and body composition variables were also included. Plasma proteins were important for pain intensity and sensitivity. Cytokines and chemokines mainly from plasma were also significantly and positively associated with a fat infiltration and content index. Conclusion Our findings of associations between cytokines and chemokines and fat infiltration and content in different tissues confirm that inflammation and immune factors are secreted from adipose tissue. FM is clearly characterized by complex interactions between peripheral tissues and the peripheral and central nervous systems, including nociceptive, immune, and neuroendocrine processes.
Collapse
Affiliation(s)
- Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
- Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Eva Lund
- Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
- Department of Radiation Physics, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Mikael Fredrik Forsgren
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
- Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Poddar S, Mondal H, Podder I. Aetiology, pathogenesis and management of neuropathic itch: A narrative review with recent updates. Indian J Dermatol Venereol Leprol 2024; 90:5-18. [PMID: 37317726 DOI: 10.25259/ijdvl_846_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/17/2023] [Indexed: 06/16/2023]
Abstract
Neuropathic itch is a relatively common yet under-reported cause of systemic pruritus. It is a debilitating condition often associated with pain, which impairs the patient's quality of life. Although much literature exists about renal and hepatic pruritus, there is a dearth of information and awareness about neuropathic itch. The pathogenesis of neuropathic itch is complex and can result from an insult at any point along the itch pathway, ranging from the peripheral receptors and nerves until the brain. There are several causes of neuropathic itch, many of which do not produce any skin lesions and are thus, often missed. A detailed history and clinical examination are necessary for the diagnosis, while laboratory and radiologic investigations may be needed in select cases. Several therapeutic strategies currently exist involving both non-pharmacological and pharmacological measures, the latter including topical, systemic, and invasive options. Further research is ongoing to clarify its pathogenesis and to design newer targeted therapies with minimal adverse effects. This narrative review highlights the current understanding of this condition, focusing on its causes, pathogenesis, diagnosis, and management, along with newer investigational drugs.
Collapse
Affiliation(s)
- Shreya Poddar
- Department of Dermatology, Asansol District Hospital, Asansol, West Bengal, India
| | - Himel Mondal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Indrashis Podder
- Department of Dermatology, College of Medicine & Sagore Dutta Hospital, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Fiebig A, Leibl V, Oostendorf D, Lukaschek S, Frömbgen J, Masoudi M, Kremer AE, Strupf M, Reeh P, Düll M, Namer B. Peripheral signaling pathways contributing to non-histaminergic itch in humans. J Transl Med 2023; 21:908. [PMID: 38087354 PMCID: PMC10717026 DOI: 10.1186/s12967-023-04698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Chronic itch (chronic pruritus) is a major therapeutic challenge that remains poorly understood despite the extensive recent analysis of human pruriceptors. It is unclear how the peripheral nervous system differentiates the signaling of non-histaminergic itch and pain. METHODS Here we used psychophysical analysis and microneurography (single nerve fiber recordings) in healthy human volunteers to explore the distinct signaling mechanisms of itch, using the pruritogens β-alanine, BAM 8-22 and cowhage extract. RESULTS The mode of application (injection or focal application using inactivated cowhage spicules) influenced the itch/pain ratio in sensations induced by BAM 8-22 and cowhage but not β-alanine. We found that sensitizing pre-injections of prostaglandin E2 increased the pain component of BAM 8-22 but not the other pruritogens. A-fibers contributed only to itch induced by β-alanine. TRPV1 and TRPA1 were necessary for itch signaling induced by all three pruritogens. In single-fiber recordings, we found that BAM 8-22 and β-alanine injection activated nearly all CM-fibers (to different extents) but not CMi-fibers, whereas cowhage extract injection activated only 56% of CM-fibers but also 25% of CMi-fibers. A "slow bursting discharge pattern" was evoked in 25% of CM-fibers by β-alanine, in 35% by BAM 8-22, but in only 10% by cowhage extract. CONCLUSION Our results indicate that no labeled line exists for these pruritogens in humans. A combination of different mechanisms, specific for each pruritogen, leads to itching sensations rather than pain. Notably, non-receptor-based mechanisms such as spatial contrast or discharge pattern coding seem to be important processes. These findings will facilitate the discovery of therapeutic targets for chronic pruritus, which are unlikely to be treated effectively by single receptor blockade.
Collapse
Affiliation(s)
- Andrea Fiebig
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Victoria Leibl
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - David Oostendorf
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Saskia Lukaschek
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Jens Frömbgen
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Maral Masoudi
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Andreas E Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Marion Strupf
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Peter Reeh
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Miriam Düll
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Namer
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
9
|
Sauvé F. Itch in dogs and cats. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2023; 64:686-690. [PMID: 37397691 PMCID: PMC10286147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Affiliation(s)
- Frédéric Sauvé
- Dr. Sauvé is a Board-certified Veterinary Dermatologist and Immediate Past President of the Canadian Academy of Veterinary Dermatology (CAVD)
| |
Collapse
|
10
|
Thomas S, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright D. Abnormal intraepidermal nerve fiber density in disease: A scoping review. Front Neurol 2023; 14:1161077. [PMID: 37153658 PMCID: PMC10157176 DOI: 10.3389/fneur.2023.1161077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 73 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6% and -34.7%, respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Douglas Wright
- Sensory Nerve Disorder Lab, Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
11
|
Raap U, Limberg MM, Kridin K, Ludwig RJ. Pruritus Is Associated with an Increased Risk for the Diagnosis of Autoimmune Skin Blistering Diseases: A Propensity-Matched Global Study. Biomolecules 2023; 13:biom13030485. [PMID: 36979421 PMCID: PMC10046528 DOI: 10.3390/biom13030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Autoimmune bullous skin diseases (AIBDs), such as bullous pemphigoid (BP) and pemphigus, are characterized and caused by autoantibodies targeting structural proteins. In BP, clinical experience and recent systematic evaluation identified pruritus to be common and an important cause of impaired quality of life. Furthermore, chronic pruritus may be the sole clinical symptom of BP. In pemphigus, a retrospective study recently documented a high prevalence of pruritus. The temporal relation between pruritus and BP/pemphigus are, however, unknown. Likewise, the presence of pruritus in AIBDs other than BP and pemphigus is unknown. To address this, we performed propensity-matched retrospective cohort studies using TriNetX, providing real-world patient data to (i) assess the risk to develop AIBDs following the diagnosis of pruritus and (ii) vice versa. We assessed this in eight AIBDs: BP, mucous membrane pemphigoid (MMP), epidermolysis bullosa acquisita, dermatitis herpetiformis, lichen planus pemphigoides (LPP), pemphigus vulgaris, pemphigus foliaceous, and paraneoplastic pemphigus (PNP). For all AIBDs, pruritus was associated with an increased risk for the subsequent diagnosis of each of the eight investigated AIBDs in 1,717,744 cases (pruritus) compared with 1,717,744 controls. The observed hazard ratios ranged from 4.2 (CI 3.2–5.5; p < 0.0001) in MMP to 28.7 (CI 3.9–211.3; p < 0.0001) in LPP. Results were confirmed in two subgroup analyses. When restricting the observation time to 6 months after pruritus onset, most HRs noticeably increased, e.g., from 6.9 (CI 6.2–7.9; p < 0.0001) to 23.3 (CI 17.0–31.8; p < 0.0001) in BP. Moreover, pruritus frequently developed following the diagnosis of any of the eight AIBDs, except for PNP. Thus, all AIBDs should be considered as differential diagnosis in patients with chronic pruritus.
Collapse
Affiliation(s)
- Ulrike Raap
- Clinics of Dermatology and Allergy, Division of Experimental Allergy and Immunodermatology, University of Oldenburg, 26129 Oldenburg, Germany
| | - Maren M. Limberg
- Clinics of Dermatology and Allergy, Division of Experimental Allergy and Immunodermatology, University of Oldenburg, 26129 Oldenburg, Germany
| | - Khalaf Kridin
- Lübeck Institute for Experimental Dermatology, University of Lübeck, 23560 Lübeck, Germany
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 5290002, Israel
- Unit of Dermatology and Skin Research Laboratory, Barch Padeh Medical Center, Poriya 15208, Israel
| | - Ralf J. Ludwig
- Lübeck Institute for Experimental Dermatology, University of Lübeck, 23560 Lübeck, Germany
- Department of Dermatology, University Clinic of Schleswig-Holstein, 23560 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-41686
| |
Collapse
|
12
|
Van Loey NEE, de Jong AEE, Hofland HWC, van Laarhoven AIM. Role of burn severity and posttraumatic stress symptoms in the co-occurrence of itch and neuropathic pain after burns: A longitudinal study. Front Med (Lausanne) 2022; 9:997183. [PMID: 36314001 PMCID: PMC9596796 DOI: 10.3389/fmed.2022.997183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Itch and pain are common after burns. Neuropathic mechanisms may underlie both modalities but remain not well-understood. This study aims to prospectively document neuropathic pain symptoms and to identify potential itch symptom profiles that differ regarding duration and co-occurrence with neuropathic pain which may inform underlying pathophysiological mechanisms and respond to different treatments. Adult burn survivors (n = 192) self-reported itch and neuropathic pain at 2 weeks post-discharge, 3, 6, 12, and 18 months post-burn. Based on the presence of itch and pain symptoms over time, participants were allocated to one itch profile: transient itch/pain, chronic itch, or chronic itch & pain. Profiles were compared on itch intensity over time using General Linear Modeling. Age, gender, burn severity, posttraumatic stress (PTS) symptoms and baseline itch intensity were examined as potential predictors of the profiles in a Multi-nominal regression analysis. Neuropathic pain occurred in 54% after discharge which decreased to 24% 18 months later. Itch intensity was highest in the chronic itch & pain profile. Compared to the transient itch profile, the chronic itch & pain profile was associated with higher burn severity and more PTS symptoms. Compared to the chronic itch profile, the chronic itch & pain profile was associated with more PTS symptoms. Findings suggest that biological and psycho-dermatological processes underlie both chronic neuropathic pain and itch processes in burn scars. Further research should elucidate the mechanisms underlying the different itch profiles, with specific focus on skin innervation and psychological factors.
Collapse
Affiliation(s)
- N. E. E. Van Loey
- Association of Dutch Burn Centres, Maasstad Hospital, Department of Burn Center, Rotterdam, Netherlands,Department of Clinical Psychology, Utrecht University, Utrecht, Netherlands,*Correspondence: N. E. E. Van Loey
| | | | - H. W. C. Hofland
- Association of Dutch Burn Centres, Maasstad Hospital, Department of Burn Center, Rotterdam, Netherlands
| | - A. I. M. van Laarhoven
- Health, Medical and Neuropsychology Unit, Faculty of Social and Behavioural Sciences, Leiden University, Leiden, Netherlands,Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, Netherlands
| |
Collapse
|
13
|
Psychological Aspects of Sensitive Skin: A Vicious Cycle. COSMETICS 2022. [DOI: 10.3390/cosmetics9040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sensitive Skin Syndrome (SSS) has been the subject of intense research in the past several years. Recent reviews confirm that about 40% of the population report moderate or very sensitive skin, and an additional 30% report slightly sensitive skin. Although certain phenotypes are more susceptible, anyone can suffer from SSS and this condition can manifest in all anatomic sites. A wide variety of environmental and lifestyle factors can trigger SSS symptoms of itching, stinging, burning, pain, and tingling. In order to avoid such triggers, the SSS individuals often alter their behaviors and habits such as restricting their daily activities, and modifying the use of everyday products that non-sensitive individuals take for granted. In addition, there is an association between SSS and some common psychological problems. Sensitive skin symptoms such as itching, stinging, burning and pain can result in sleep disorders, fatigue, stress and anxiety. Conversely, lack of sleep and stress from external sources can make the SSS sufferer more prone to the symptoms. This becomes a vicious cycle that impacts consumers’ quality of life and well-being. We are beginning to understand the importance of the underlying causes that can impact skin conditions. However, in order to better understand the SSS individual, we need to also be aware of the psychological factors that can trigger and/or worsen this skin condition, as well as the psychological stresses the condition places on the individual.
Collapse
|
14
|
Tominaga M, Takamori K. Peripheral itch sensitization in atopic dermatitis. Allergol Int 2022; 71:265-277. [PMID: 35624035 DOI: 10.1016/j.alit.2022.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis is a skin disorder caused by skin dryness and barrier dysfunction, resulting in skin inflammation and chronic itch (or pruritus). The pathogenesis of atopic dermatitis is thought to be initiated by a lowering of the itch threshold due to dry skin. This lowering of the itch threshold is at least partially due to the increase in intraepidermal nerve fibers and sensitization of sensory nerves by interleukin (IL)-33 produced and secreted by keratinocytes. Such skin is easily prone to itch due to mechanical stimuli, such as rubbing of clothing and chemical stimuli from itch mediators. In patients with atopic dermatitis, once itch occurs, further itch is induced by scratching, and the associated scratching breaks down the skin barrier. Disruption of the skin barrier allows entry into the epidermis of external foreign substances, such as allergens derived from house dust mites, leading to an increased induction of type 2 inflammatory responses. As a result, type 2 cytokines IL-4, IL-13, and IL-31 are mainly secreted by Th2 cells, and their action on sensory nerve fibers causes further itch sensitization. These sequences of events are thought to occur simultaneously in patients with atopic dermatitis, leading to a vicious itch-scratch cycle. This vicious cycle becomes a negative spiral that leads to disease burden. Therefore, controlling itch is essential for the treatment of atopic dermatitis. In this review, we summarize and discuss advances in the mechanisms of peripheral itch sensitization in atopic dermatitis, focusing on skin barrier-neuro-immune triadic connectivity.
Collapse
|
15
|
Kwatra SG, Misery L, Clibborn C, Steinhoff M. Molecular and cellular mechanisms of itch and pain in atopic dermatitis and implications for novel therapeutics. Clin Transl Immunology 2022; 11:e1390. [PMID: 35582626 PMCID: PMC9082890 DOI: 10.1002/cti2.1390] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease. Patients with atopic dermatitis experience inflammatory lesions associated with intense itch and pain, which lead to sleep disturbance and poor mental health and quality of life. We review the molecular mechanisms underlying itch and pain symptoms in atopic dermatitis and discuss the current clinical development of treatments for moderate-to-severe atopic dermatitis. The molecular pathology of atopic dermatitis includes aberrant immune activation involving significant cross-talk among the skin and immune and neuronal cells. Exogenous and endogenous triggers modulate stimulation of mediators including cytokine/chemokine expression/release by the skin and immune cells, which causes inflammation, skin barrier disruption, activation and growth of sensory neurons, itch and pain. These complex interactions among cell types are mediated primarily by cytokines, but also involve chemokines, neurotransmitters, lipids, proteases, antimicrobial peptides, agonists of ion channels or various G protein-coupled receptors. Patients with atopic dermatitis have a cytokine profile characterised by abnormal levels of interleukins 4, 12, 13, 18, 22, 31 and 33; thymic stromal lymphopoietin; and interferon gamma. Cytokine receptors mainly signal through the Janus kinase/signal transducer and activator of transcription pathway. Among emerging novel therapeutics, several Janus kinase inhibitors are being developed for topical or systemic treatment of moderate-to-severe atopic dermatitis because of their potential to modulate cytokine expression and release. Janus kinase inhibitors lead to changes in gene expression that have favourable effects on local and systemic cytokine release, and probably other mediators, thus successfully modulating molecular mechanisms responsible for itch and pain in atopic dermatitis.
Collapse
Affiliation(s)
- Shawn G Kwatra
- Department of DermatologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Laurent Misery
- Department of DermatologyUniversity Hospital of BrestBrestFrance
| | | | - Martin Steinhoff
- Department of Dermatology and VenereologyHamad Medical CorporationDohaQatar
- Translational Research InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Dermatology InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Department of DermatologyWeill Cornell Medicine‐QatarDohaQatar
- Qatar University, College of MedicineDohaQatar
- Department of DermatologyWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
16
|
Misery L, Bataille A, Talagas M, Le Gall-Ianotto C, Fouchard M, Huet F, Ficheux AS, Roudot AC, Fluhr JW, Brenaut E. Sensitive Skin Syndrome: A Low-Noise Small-Fiber Neuropathy Related to Environmental Factors? FRONTIERS IN PAIN RESEARCH 2022; 3:853491. [PMID: 35399156 PMCID: PMC8990967 DOI: 10.3389/fpain.2022.853491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background and ObjectivesPatients frequently complain of mild, transient, unpleasant skin sensations that cannot be diagnosed as common neuropathies. Dermatologists have termed these symptoms “sensitive skin syndrome.” This narrative review was performed for a better knowledge by other specialists.Databases and Data TreatmentPublications on pain in sensitive skin syndrome were obtained from PubMed.ResultsThere is a growing body of data supporting the concept that sensitive skin is a type of small-fiber neuropathy. The arguments are based on clinical data, a decrease in intra-epidermal nerve fiber density, quantitative sensory testing abnormalities and an association with irritable bowel syndrome and sensitive eyes. Sensitive skin is triggered by environmental factors. Sensitive skin is a frequent condition, with a lifetime prevalence of ~50% according to self-reports.ConclusionsMild levels of skin pain or itch are frequently experienced by patients, who rarely report them. There is a need for a better knowledge of sensitive skin because it can be the first level of small-fiber neuropathies.
Collapse
Affiliation(s)
- Laurent Misery
- Univ Brest, LIEN, Brest, France
- *Correspondence: Laurent Misery
| | | | | | | | | | | | | | | | - Joachim W. Fluhr
- Univ Brest, LIEN, Brest, France
- Department of Dermatology, Venereologie and Allergology, Charité Universitaetsmedizin, Berlin, Germany
| | | |
Collapse
|
17
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
18
|
Li J, Dong R, Zeng Y. Characteristics, mechanism, and management of pain in atopic dermatitis: A literature review. Clin Transl Allergy 2021; 11:e12079. [PMID: 34962720 PMCID: PMC8805692 DOI: 10.1002/clt2.12079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic, pruritic, immune-mediated inflammatory disease. Developments in basic science and clinical research have increased our understanding of AD. Although pain as a symptom of AD is underemphasized in previous studies, multiple researchers address pain as a frequent burden of AD. However, the exact role of pain in AD is not fully understood. AIMS Our review aimed to summarize the current evidence focusing on characteristics, mechanism, and management of pain in AD. MATERIALS & METHODS We conducted a thorough literature review in the PubMed database to figure out different aspects discussing pain in AD, including pain symptoms, burden, the relationship between pain and itch, mechanism, and pain management in AD. RESULTS AND CONCLUSION AD patients affected by skin pain vary from 42.7%-92.2% with remarkable intensity and heavy burden. Skin pain and itch interacted both in symptoms and mechanisms. Atopic skin with the impaired barrier, neurogenic inflammation mediators, peripheral and central sensitization of pain may possibly explain pain mechanism in AD. Future research is needed to clarify the commonality and disparity of pain and itch in AD in order to seek efficacious medications and treatment.
Collapse
Affiliation(s)
- Jia‐Xin Li
- Department of DermatologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic DiseasesBeijingChina
- Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Rui‐Jia Dong
- Department of Plastic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Yue‐Ping Zeng
- Department of DermatologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic DiseasesBeijingChina
| |
Collapse
|
19
|
Lebonvallet N, Fluhr JW, Le Gall-Ianotto C, Leschiera R, Talagas M, Reux A, Bataille A, Brun C, Oddos T, Pennec JP, Carré JL, Misery L. A re-innervated in vitro skin model of non-histaminergic itch and skin neurogenic inflammation: PAR2-, TRPV1- and TRPA1-agonist induced functionality. SKIN HEALTH AND DISEASE 2021; 1:e66. [PMID: 35663777 PMCID: PMC9060135 DOI: 10.1002/ski2.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
Background Skin, and epidermis, is innervated by sensory nerve fibres. Interactions between them and signal transduction are only partially elucidated in physiological/pathological conditions, especially in pruritus. Objectives To study the mechanisms involved in pruritus in vitro, we developed a skin explant model re‐innervated by sensory neurons. Methods This model is based on the co‐culture of human skin explants and sensory neurons from dorsal root ganglia of rats. Innervation and the expression of protease activated receptor 2 (PAR2), transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin one (TRPA1) was analysed by immunostaining. The response of the model to TRPV1, PAR2 and TRPA1 agonists was analysed by patch‐clamp, qPCR and enzyme‐linked immunosorbent assay. Results After 5 days of re‐innervating nerve fibres was evidenced in the epidermis. Re‐innervation was correlated with decrease of epidermal thickness and the number of apoptotic cells in the tissue. The major actors of non‐histaminergic itch (PAR‐2, thymic stromal lymphopoietin [TSLP], TSLP‐R, TRPA1 and TRPV1) were expressed in neurons and/or epidermal cells of skin explants. After topical exposure of TRPV1‐(Capsaicin), TRPA1‐(Polygodial) and PAR2‐agonist (SLIGKV‐NH2) activation of reinnervating neurons could be shown in patch‐clamp analysis. The release of TSLP was increased with capsaicin or SLIGKV but decreased with polygodial. Release of CGRP was increased by capsaicin and polygodial but decreased with SLIGKV. Activation by SLIGKV showed a decrease of VEGF; polygodial induced an increase of TSLP, Tumour necrosis factor (TNF) and nerve growth factor and capsaicin lead to a decrease of sema3 and TNF expression. Conclusion The present model is suitable for studying itch and neurogenic inflammation pathways in vitro. We observed that activation of TRPV1, TRPA1 and PAR‐2 leads to different response profiles in re‐innervated skin explants.
Collapse
Affiliation(s)
- N Lebonvallet
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - J W Fluhr
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France.,Department of Dermatology Charité Universitätsmedizin Berlin Germany
| | - C Le Gall-Ianotto
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - R Leschiera
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - M Talagas
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - A Reux
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - A Bataille
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - C Brun
- Johnson & Johnson Santé Beauté France Val de Reuil France
| | - T Oddos
- Johnson & Johnson Santé Beauté France Val de Reuil France
| | - J-P Pennec
- Optimisation des Régulations PHYsiologiques Université de Bretagne Occidentale Brest France
| | - J-L Carré
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - L Misery
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| |
Collapse
|
20
|
Dubin C, Del Duca E, Guttman-Yassky E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis. Expert Rev Clin Immunol 2021; 17:835-852. [PMID: 34106037 DOI: 10.1080/1744666x.2021.1940962] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Atopic dermatitis (AD) is the most common inflammatory skin disease. It has a complex pathophysiology, with a combination of immune dysregulation and intrinsic barrier defects driving cutaneous inflammation and allergic symptomatology. The IL-4, IL-13 and IL-31 inflammatory pathways have been identified as hallmark features in the pathogenesis of the disease, contributing uniquely and synergistically to immune and barrier abnormalities as well as the key symptoms, such as pruritis. Novel therapeutics that target these pathways have been under development to find treatments for AD.Areas covered: This review discusses the IL-4, IL-13 and IL-31 pathways in AD. We will also detail novel targeted therapeutics that have recently been or are currently in clinical trials for AD. A literature search was conducted by querying Scopus, Google Scholar, PubMed, and Clinicaltrials.gov up to January 2021 using combinations of the search terms 'IL-4' 'IL-13' 'IL-31' 'atopic dermatitis' 'immune pathway' 'biologics' 'novel therapeutics' 'JAK/STAT inhibitors.'Expert opinion: The complex pathophysiology of AD advocates for innovation. Novel minimally invasive sampling modalities such as tape stripping will allow for a broader characterization of the immunomechanisms behind AD pathophysiology. This will allow for the continued development of a personalized medicine approach to treat AD.
Collapse
Affiliation(s)
- Celina Dubin
- Department of Dermatology, And Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ester Del Duca
- Department of Dermatology, And Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Dermatology, Magna Graecia, Catanzaro, IT, Calabria
| | - Emma Guttman-Yassky
- Department of Dermatology, And Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA.,Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York USA
| |
Collapse
|
21
|
Lin N, Li M, Guo ZH, Wu MQ, Zhou YK, Zhang LX, Yu H, Zhong Y, Huang CS. [A multicenter prospective randomized controlled clinical study of 5-fluorouracil in different mass concentrations combined with triamcinolone in the treatment of keloids]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:437-445. [PMID: 34044526 PMCID: PMC11917358 DOI: 10.3760/cma.j.cn501120-20200315-00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To evaluate the clinical effects of 5-fluorouracil in different mass concentrations combined with triamcinolone in the treatment of keloids. Methods: From March 2018 to March 2019, 29 patients with 31 keloids receipted in the Department of Plastic Surgery of Fujian Medical University Union Hospital, 11 patients with 20 keloids receipted in the Department of Dermatology of Pingtan Comprehensive Experimental Area Hospital, and 9 patients with 9 keloids receipted in the Fuzhou Heisey-Dea Aesthetic Clinic were included in this prospectively randomized control study, with 27 males and 22 females, aged (30±9) years. According to the random number table, the keloids were divided into low mass concentration group (19 keloids, 17 patients), medium mass concentration group (21 keloids, 19 patients), and high mass concentration group (20 keloids, 17 patients). Then 5-fluorouracil at mass concentrations of 0.5, 5.0, and 12.5 mg/mL combined with triamcinolone acetonide were injected respectively, once every 4 weeks, for a total of 3 times. Before the first treatment and in 3 months after the last treatment, the appearance of keloids was evaluated by Vancouver Scar Scale (VSS) and pain and pruritus of keloids were evaluated by Visual Analogue Scale (VAS). Then the score differences before and after the treatment were calculated. In 6 months after the last treatment, the patients' efficacy satisfaction was evaluated by efficacy satisfaction rating scale. Adverse reactions during the treatment were recorded. In the follow-up of one year after the last treatment, the recurrence rates of keloids were counted. Data were statistically analyzed with chi-square test, one-way analysis of variance, paired sample t test, least significant difference t test, Wilcoxon rank sum test, Kruskal-Wallis rank sum test, or Fisher's exact probability test. Results: Before the first treatment, the appearance VSS scores of appearance of keloids in the three groups were similar (F=0.039, P>0.05). In 3 months after the last treatment, the appearance VSS scores of keloids in low mass concentration group were significantly higher than those in medium mass concentration group and high mass concentration group (t=2.267, 4.086, P<0.05 or P<0.01). In 3 months after the last treatment, the appearance VSS scores of keloids in low mass concentration group, medium mass concentration group, and high mass concentration group were significantly decreased compared with those before the first treatment (t=18.222, 44.272, 22.523, P<0.01). The differences of appearance VSS scores of keloids in low mass concentration group before and after treatment were significantly lower than those in medium mass concentration group and high mass concentration group (t=-4.096, -6.357, P<0.01), and the differences of appearance VSS scores of keloids in medium mass concentration group before and after treatment were significantly lower than those in high mass concentration group (t=-2.368, P<0.05). Before the first treatment, the pain and pruritus VAS scores of keloids in the three groups were similar (χ2=0.149, P>0.05). In 3 months after the last treatment, the pain and pruritus VAS scores of keloids in low mass concentration group were significantly higher than those in medium mass concentration group and high mass concentration group (Z=2.191, 4.386, P<0.05 or P<0.01), and the pain and pruritus VAS scores of keloids in medium mass concentration group were significantly higher than those in high mass concentration group (Z=2.276, P<0.05). In 3 months after the last treatment, the pain and pruritus VAS scores of keloids in medium mass concentration group and high mass concentration group were significantly decreased compared with those before the first treatment (Z=-3.904, -3.844, P<0.01). The differences of pain and pruritus VAS scores of keloids in low mass concentration group before and after treatment were significantly lower than those in medium mass concentration group and high mass concentration group (Z=-4.265, -6.104, P<0.01). In 6 months after the last treatment, the efficacy satisfaction scores of the corresponding patients of keloids were (88±8) points in high mass concentration group, which were significantly higher than (76±8) points in medium mass concentration group and (60±8) points in low mass concentration group (t=-3.820, -6.675, P<0.01), and the efficacy satisfaction scores of the corresponding patients of keloids in medium mass concentration group were significantly higher than those in high mass concentration group (t=-2.984, P<0.05). There was only statistically significant difference in pain within the 3 groups (P<0.01). In the follow-up of one year after the last treatment, the recurrence rate of keloids in high mass concentration group was significantly lower than that in low mass concentration group (χ2=8.313, P<0.01), and the recurrence rate of keloids in medium mass concentration group was similar to the recurrence rates in low mass concentration group and high mass concentration group (P>0.05). Conclusions: After treating keloids with high mass concentration of 5-fluorouracil combined with triamcinolone acetonide, the symptoms were significantly improved, the efficacy satisfaction of patients was increased, with no obvious adverse reactions but long lasting efficacy. Their overall effects are better than treatment using medium and low mass concentrations of 5-fluorouracil, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- N Lin
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Institute of Plastic Surgery and Regenerative Medicine, Fujian Medical University, Fuzhou 350001, China
| | - M Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Institute of Plastic Surgery and Regenerative Medicine, Fujian Medical University, Fuzhou 350001, China
| | - Z H Guo
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Institute of Plastic Surgery and Regenerative Medicine, Fujian Medical University, Fuzhou 350001, China
| | - M Q Wu
- Department of Dermatology, Pingtan Comprehensive Experimental Area Hospital, Fuzhou 350400, China
| | - Y K Zhou
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Institute of Plastic Surgery and Regenerative Medicine, Fujian Medical University, Fuzhou 350001, China
| | - L X Zhang
- Fuzhou Heisey-Dea Aesthetic Clinic, Fuzhou 350028, China
| | - H Yu
- Department of Dermatology, Pingtan Comprehensive Experimental Area Hospital, Fuzhou 350400, China
| | - Y Zhong
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Institute of Plastic Surgery and Regenerative Medicine, Fujian Medical University, Fuzhou 350001, China
| | - C S Huang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Institute of Plastic Surgery and Regenerative Medicine, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
22
|
Lowy DB, Makker PGS, Moalem-Taylor G. Cutaneous Neuroimmune Interactions in Peripheral Neuropathic Pain States. Front Immunol 2021; 12:660203. [PMID: 33912189 PMCID: PMC8071857 DOI: 10.3389/fimmu.2021.660203] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Bidirectional interplay between the peripheral immune and nervous systems plays a crucial role in maintaining homeostasis and responding to noxious stimuli. This crosstalk is facilitated by a variety of cytokines, inflammatory mediators and neuropeptides. Dysregulation of this delicate physiological balance is implicated in the pathological mechanisms of various skin disorders and peripheral neuropathies. The skin is a highly complex biological structure within which peripheral sensory nerve terminals and immune cells colocalise. Herein, we provide an overview of the sensory innervation of the skin and immune cells resident to the skin. We discuss modulation of cutaneous immune response by sensory neurons and their mediators (e.g., nociceptor-derived neuropeptides), and sensory neuron regulation by cutaneous immune cells (e.g., nociceptor sensitization by immune-derived mediators). In particular, we discuss recent findings concerning neuroimmune communication in skin infections, psoriasis, allergic contact dermatitis and atopic dermatitis. We then summarize evidence of neuroimmune mechanisms in the skin in the context of peripheral neuropathic pain states, including chemotherapy-induced peripheral neuropathy, diabetic polyneuropathy, post-herpetic neuralgia, HIV-induced neuropathy, as well as entrapment and traumatic neuropathies. Finally, we highlight the future promise of emerging therapies associated with skin neuroimmune crosstalk in neuropathic pain.
Collapse
Affiliation(s)
- Daniel B Lowy
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Preet G S Makker
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
24
|
Abstract
Sensitive skin can be considered a neuropathic disorder. Sensory disorders and the decrease in intra-epidermal nerve ending density are strong arguments for small-fiber neuropathies. Sensitive skin is frequently associated with irritable bowel syndrome or sensitive eyes, which are also considered neuropathic disorders. Consequently, in vitro co-cultures of skin and neurons are adequate models for sensitive skin.
Collapse
|
25
|
Ng YQ, Gupte TP, Krause PJ. Tick hypersensitivity and human tick-borne diseases. Parasite Immunol 2021; 43:e12819. [PMID: 33428244 DOI: 10.1111/pim.12819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Immune-mediated hypersensitivity reactions to ticks and other arthropods are well documented. Hypersensitivity to ixodid (hard bodied) ticks is especially important because they transmit infection to humans throughout the world and are responsible for most vector-borne diseases in the United States. The causative pathogens of these diseases are transmitted in tick saliva that is secreted into the host while taking a blood meal. Tick salivary proteins inhibit blood coagulation, block the local itch response and impair host anti-tick immune responses, which allows completion of the blood meal. Anti-tick host immune responses are heightened upon repeated tick exposure and have the potential to abrogate tick salivary protein function, interfere with the blood meal and prevent pathogen transmission. Although there have been relatively few tick bite hypersensitivity studies in humans compared with those in domestic animals and laboratory animal models, areas of human investigation have included local hypersensitivity reactions at the site of tick attachment and generalized hypersensitivity reactions. Progress in the development of anti-tick vaccines for humans has been slow due to the complexities of such vaccines but has recently accelerated. This approach holds great promise for future prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Yu Quan Ng
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Trisha P Gupte
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
Kahremany S, Hofmann L, Harari M, Gruzman A, Cohen G. Pruritus in psoriasis and atopic dermatitis: current treatments and new perspectives. Pharmacol Rep 2021; 73:443-453. [PMID: 33460006 DOI: 10.1007/s43440-020-00206-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Psoriasis and atopic dermatitis (AD) are two common chronic inflammatory skin diseases. Although showing different etiology and clinical manifestations, patients with either disease suffer from low health-related quality of life due to pruritus (dermal itch). Recent studies have revealed that more than 85% of psoriasis patients suffer from pruritus, and it is also the dominating symptom of AD. However, as this is a non-life treating symptom, it was partly neglected for years. In this review, we focus on current findings as well as the impact and potential treatments of pruritus in these two skin diseases. We first distinguish the type of itch based on involved mediators and modulators. This clear delineation between the types of pruritus based on involved receptors and pathways allows for precise treatment. In addition, insights into recent clinical trials aimed to alleviate pruritus by targeting these receptors are presented. We also report about novel advances in combinatorial treatments, dedicated to the type of pruritus linked to a causal disease. Altogether, we suggest that only a focused treatment tailored to the primary disease and the underlying molecular signals will provide fast and sustained relief of pruritus associated with psoriasis or AD.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel. .,The Skin Research Institute, The Dead Sea and Arava Science Center, 86910, Masada, Israel.
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Marco Harari
- Medical Climatotherapy Unit, The Dead Sea and Arava Science Center, 86910, Masada, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, 86910, Masada, Israel.,Ben Gurion University of the Negev, Eilat Campus, 8855630, Eilat, Israel
| |
Collapse
|
27
|
Racine PJ, Janvier X, Clabaut M, Catovic C, Souak D, Boukerb AM, Groboillot A, Konto-Ghiorghi Y, Duclairoir-Poc C, Lesouhaitier O, Orange N, Chevalier S, Feuilloley MGJ. Dialog between skin and its microbiota: Emergence of "Cutaneous Bacterial Endocrinology". Exp Dermatol 2020; 29:790-800. [PMID: 32682345 DOI: 10.1111/exd.14158] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Microbial endocrinology is studying the response of microorganisms to hormones and neurohormones and the microbiota production of hormones-like molecules. Until now, it was mainly applied to the gut and revealed that the intestinal microbiota should be considered as a real organ in constant and bilateral interactions with the whole human body. The skin harbours the second most abundant microbiome and contains an abundance of nerve terminals and capillaries, which in addition to keratinocytes, fibroblasts, melanocytes, dendritic cells and endothelial cells, release a huge diversity of hormones and neurohormones. In the present review, we will examine recent experimental data showing that, in skin, molecules such as substance P, calcitonin gene-related peptide, natriuretic peptides and catecholamines can directly affect the physiology and virulence of common skin-associated bacteria. Conversely, bacteria are able to synthesize and release compounds including histamine, glutamate and γ-aminobutyric acid or peptides showing partial homology with neurohormones such as α-melanocyte-stimulating hormone (αMSH). The more surprising is that some viruses can also encode neurohormones mimicking proteins. Taken together, these elements demonstrate that there is also a cutaneous microbial endocrinology and this emerging concept will certainly have important consequences in dermatology.
Collapse
Affiliation(s)
- Pierre-Jean Racine
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Xavier Janvier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Maximilien Clabaut
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Chloe Catovic
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Djouhar Souak
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Amine M Boukerb
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Anne Groboillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Cécile Duclairoir-Poc
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| |
Collapse
|
28
|
Røikjer J, Mørch CD, Ejskjaer N. Diabetic Peripheral Neuropathy: Diagnosis and Treatment. Curr Drug Saf 2020; 16:2-16. [PMID: 32735526 DOI: 10.2174/1574886315666200731173113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is traditionally divided into large and small fibre neuropathy (SFN). Damage to the large fibres can be detected using nerve conduction studies (NCS) and often results in a significant reduction in sensitivity and loss of protective sensation, while damage to the small fibres is hard to reliably detect and can be either asymptomatic, associated with insensitivity to noxious stimuli, or often manifests itself as intractable neuropathic pain. OBJECTIVE To describe the recent advances in both detection, grading, and treatment of DPN as well as the accompanying neuropathic pain. METHODS A review of relevant, peer-reviewed, English literature from MEDLINE, EMBASE and Cochrane Library between January 1st 1967 and January 1st 2020 was used. RESULTS We identified more than three hundred studies on methods for detecting and grading DPN, and more than eighty randomised-controlled trials for treating painful diabetic neuropathy. CONCLUSION NCS remains the method of choice for detecting LFN in people with diabetes, while a gold standard for the detection of SFN is yet to be internationally accepted. In the recent years, several methods with huge potential for detecting and grading this condition have become available including skin biopsies and corneal confocal microscopy, which in the future could represent reliable endpoints for clinical studies. While several newer methods for detecting SFN have been developed, no new drugs have been accepted for treating neuropathic pain in people with diabetes. Tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors and anticonvulsants remain first line treatment, while newer agents targeting the proposed pathophysiology of DPN are being developed.
Collapse
Affiliation(s)
- Johan Røikjer
- Department of Health Science and Technology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Niels Ejskjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
29
|
Berger J, Becker S, Ludwig O, Kemmler W, Fröhlich M. Whole-body electromyostimulation in physical therapy: do gender, skinfold thickness or body composition influence maximum intensity tolerance? J Phys Ther Sci 2020; 32:395-400. [PMID: 32581432 PMCID: PMC7276779 DOI: 10.1589/jpts.32.395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/24/2020] [Indexed: 01/10/2023] Open
Abstract
[Purpose] Whole-body electromyostimulation (WB-EMS) is an extension of the EMS
application known in physical therapy. In WB-EMS, body composition and skinfold thickness
seem to play a decisive role in influencing the Ohmic resistance and therefore the maximum
intensity tolerance. That is why the therapeutic success of (WB-)EMS may depend on
individual anatomical parameters. The aim of the study was to find out whether gender,
skinfold thickness and parameters of body composition have an influence on the maximum
intensity tolerance in WB-EMS. [Participants and Methods] Fifty-two participants were
included in the study. Body composition (body impedance, body fat, fat mass, fat-free
mass) and skinfold thicknesses were measured and set into relation to the maximum
intensity tolerance. [Results] No relationship between the different anthropometric
parameters and the maximum intensity tolerance was detected for both genders. Considering
the individual muscle groups, no similarities were found in the results. [Conclusion] Body
composition or skinfold thickness do not seem to have any influence on the maximum
intensity tolerance in WB-EMS training. For the application in physiotherapy this means
that a dosage of the electrical voltage within the scope of a (WB-) EMS application is
only possible via the subjective feedback (BORG Scale).
Collapse
Affiliation(s)
- Joshua Berger
- Department of Sports Science, Technische Universität Kaiserslautern: 67663 Kaiserslautern, Germany
| | - Stephan Becker
- Department of Sports Science, Technische Universität Kaiserslautern: 67663 Kaiserslautern, Germany
| | - Oliver Ludwig
- Department of Sports Science, Technische Universität Kaiserslautern: 67663 Kaiserslautern, Germany
| | - Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen, Germany
| | - Michael Fröhlich
- Department of Sports Science, Technische Universität Kaiserslautern: 67663 Kaiserslautern, Germany
| |
Collapse
|
30
|
The Neuropathic Itch Caused by Pseudorabies Virus. Pathogens 2020; 9:pathogens9040254. [PMID: 32244386 PMCID: PMC7238046 DOI: 10.3390/pathogens9040254] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus related to varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1). PRV is the causative agent of Aujeskzy’s disease in swine. PRV infects mucosal epithelium and the peripheral nervous system (PNS) of its host where it can establish a quiescent, latent infection. While the natural host of PRV is the swine, a broad spectrum of mammals, including rodents, cats, dogs, and cattle can be infected. Since the nineteenth century, PRV infection is known to cause a severe acute neuropathy, the so called “mad itch” in non-natural hosts, but surprisingly not in swine. In the past, most scientific efforts have been directed to eradicating PRV from pig farms by the use of effective marker vaccines, but little attention has been given to the processes leading to the mad itch. The main objective of this review is to provide state-of-the-art information on the mechanisms governing PRV-induced neuropathic itch in non-natural hosts. We highlight similarities and key differences in the pathogenesis of PRV infections between non-natural hosts and pigs that might explain their distinctive clinical outcomes. Current knowledge on the neurobiology and possible explanations for the unstoppable itch experienced by PRV-infected animals is also reviewed. We summarize recent findings concerning PRV-induced neuroinflammatory responses in mice and address the relevance of this animal model to study other alphaherpesvirus-induced neuropathies, such as those observed for VZV infection.
Collapse
|