1
|
He ZJ, He K, Cai SW, Zhang R, Shao ZB, Wang ST, Li XP, Li YC, Liu WJ, Zhu YQ, Zeng SJ, Su YB, Shi Z. Phase separation of RNF214 promotes the progression of hepatocellular carcinoma. Cell Death Dis 2024; 15:483. [PMID: 38969650 PMCID: PMC11226663 DOI: 10.1038/s41419-024-06869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and the expression and function of an uncharacterized protein RNF214 in HCC are still unknown. Phase separation has recently been observed to participate in the progression of HCC. In this study, we investigated the expression, function, and phase separation of RNF214 in HCC. We found that RNF214 was highly expressed in HCC and associated with poor prognosis. RNF214 functioned as an oncogene to promote the proliferation, migration, and metastasis of HCC. Mechanically, RNF214 underwent phase separation, and the coiled-coil (CC) domain of RNF214 mediated its phase separation. Furthermore, the CC domain was necessary for the oncogenic function of RNF214 in HCC. Taken together, our data favored that phase separation of RNF214 promoted the progression of HCC. RNF214 may be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zheng-Jie He
- Cancer Minimally Invasive Therapies Centre, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ke He
- Cancer Minimally Invasive Therapies Centre, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Song-Wang Cai
- Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Rui Zhang
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhong-Bao Shao
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Sheng-Te Wang
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiao-Peng Li
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yan-Chi Li
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wei-Jing Liu
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - You-Qing Zhu
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shi-Jie Zeng
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yu-Bin Su
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhi Shi
- Cancer Minimally Invasive Therapies Centre, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
2
|
Floreani A, Gabbia D, De Martin S. Are Gender Differences Important for Autoimmune Liver Diseases? Life (Basel) 2024; 14:500. [PMID: 38672770 PMCID: PMC11050899 DOI: 10.3390/life14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Gender Medicine has had an enormous expansion over the last ten years. Autoimmune liver diseases include several conditions, i.e., autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and conditions involving the liver or biliary tree overlapping with AIH, as well as IgG4-related disease. However, little is known about the impact of sex in the pathogenesis and natural history of these conditions. The purpose of this review is to provide an update of the gender disparities among the autoimmune liver diseases by reviewing the data published from 1999 to 2023. The epidemiology of these diseases has been changing over the last years, due to the amelioration of knowledge in their diagnosis, pathogenesis, and treatment. The clinical data collected so far support the existence of sex differences in the natural history of autoimmune liver diseases. Notably, their history could be longer than that which is now known, with problems being initiated even at a pediatric age. Moreover, gender disparity has been observed during the onset of complications related to end-stage liver disease, including cancer incidence. However, there is still an important debate among researchers about the impact of sex and the pathogenesis of these conditions. With this review, we would like to emphasize the urgency of basic science and clinical research to increase our understanding of the sex differences in autoimmune liver diseases.
Collapse
Affiliation(s)
- Annarosa Floreani
- Scientific Consultant IRCCS Negrar, 37024 Verona, Italy
- University of Padova, 35122 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| |
Collapse
|
3
|
Muzahim Y, Wakil A, Bassi M, Pyrsopoulos N. Treatment of Primary Biliary Cholangitis including Transplantation. Clin Liver Dis 2024; 28:103-114. [PMID: 37945152 DOI: 10.1016/j.cld.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Ursodeoxycholic acid (UDCA) is the first-line treatment of primary biliary cholangitis (PBC). Long-term UDCA use significantly reduces progression to cirrhosis. UDCA improves liver enzymes and transplant-free survival rates. Despite the association between PBC and hyperlipidemia, treatment is indicated under specific circumstances with statins and fibrates being safe options. Osteoporosis, which is frequently seen, is usually managed based on data from postmenopausal women. Sicca syndrome is treated similarly to its standalone condition with the use of hydroxypropyl methylcellulose eye drops and anticholinergic drugs.
Collapse
Affiliation(s)
- Yasameen Muzahim
- Division of Gastroenterology and Hepatlogy, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H Rm - 536, Newark, NJ 07101, USA
| | - Ali Wakil
- Division of Gastroenterology and Hepatlogy, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H Rm - 536, Newark, NJ 07101, USA
| | - Mehak Bassi
- Division of Gastroenterology and Hepatoloy, Saint Peter's University Hospital, 254 Easton Avenue, New Brunswick, NJ 08901, USA
| | - Nikolaos Pyrsopoulos
- Division of Gastroenterology and Hepatlogy, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H Rm - 536, Newark, NJ 07101, USA.
| |
Collapse
|
4
|
Scaravaglio M, Carbone M, Invernizzi P. Autoimmune liver diseases. Minerva Gastroenterol (Torino) 2023; 69:7-9. [PMID: 36856272 DOI: 10.23736/s2724-5985.22.03279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Miki Scaravaglio
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Monza-Brianza, Italy
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Monza-Brianza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy -
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Monza-Brianza, Italy
| |
Collapse
|
5
|
Abstract
Primary biliary cholangitis (PBC) is a rare disease of the liver characterized by an autoimmune attack on the small bile ducts. PBC is a complex trait, meaning that a large list of genetic factors interacts with environmental agents to determine its onset. Genome-wide association studies have had a huge impact in fostering research in PBC, but many steps need still to be done compared with other autoimmune diseases of similar prevalence. This review presents the state-of-the-art regarding the genetic architecture of PBC and provides some thoughtful reflections about possible future lines of research, which can be helpful to fill the missing heritability gap in PBC.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy.
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele 20072, Italy; Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano 20089, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
6
|
Scaravaglio M, Carbone M. Prognostic Scoring Systems in Primary Biliary Cholangitis: An Update. Clin Liver Dis 2022; 26:629-642. [PMID: 36270720 DOI: 10.1016/j.cld.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is a complex, chronic disease with a heterogeneous presentation, disease progression, and response to therapy. Several prognostic models based on disease stage and/or treatment response enhance risk stratification and therapeutic management. Recent work on disease modeling proposed early prediction of outcomes at PBC onset, yet this has not been implemented in clinical practice. Although early stratification of patients based on their individual risk of developing end-stage liver disease may prove cost-effective and actually become matter of medical deontology to timely offer the best therapeutic option, given the forthcoming availability of novel, disease-modifying drugs. This review outlines established and novel prognostic systems in PBC and provides some perspectives on the potential role of omics-derived biomarkers in developing reliable risk prediction models and promoting the implementation of personalized medicine in PBC.
Collapse
Affiliation(s)
- Miki Scaravaglio
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza (MB), Italy.
| | - Marco Carbone
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza (MB), Italy.
| |
Collapse
|
7
|
Ray G. Management of liver diseases: Current perspectives. World J Gastroenterol 2022; 28:5818-5826. [PMID: 36353204 PMCID: PMC9639658 DOI: 10.3748/wjg.v28.i40.5818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
There is increasing incidence and prevalence of acute and chronic liver diseases (CLDs) all over the world which influence the quality of life and can give rise to life threatening complications. The burden of advanced liver disease due to hepatitis B has been controlled by antivirals but its eradication is difficult soon. Highly effective directly acting antiviral therapy has reduced the burden of hepatitis C but is partially offset by increasing IV drug abuse. Non-alcoholic fatty liver disease pandemic is on and there is recent alarming increase in alcohol related liver disease, both of which have no drug cure apart from control of the risk factors. Genetic factors have been identified in progression of all forms of CLD. Due to better management of complications of CLD, the life span of patients have increased spiking the number of hepatocellular carcinoma (HCC) and patients needing liver transplantation (LT). The present severe acute respiratory syndrome coronavirus pandemic has affected the outcome CLD including LT in addition to causing acute hepatitis. Better diagnostics and therapeutics are available for liver fibrosis, portal hypertension, HCC and post LT management and many drugs are under trial. The present review summarises the current scenario of the epidemiology and the advances in diagnosis and treatment of liver diseases including their complications like portal hypertension, HCC and LT.
Collapse
Affiliation(s)
- Gautam Ray
- Gastroenterology Unit, Department of Medicine, B.R.Singh (Railway) Hospital, Kolkata 700014, West Bengal, India
| |
Collapse
|
8
|
Floreani A, Gabbia D, De Martin S. Update on the Pharmacological Treatment of Primary Biliary Cholangitis. Biomedicines 2022; 10:biomedicines10082033. [PMID: 36009580 PMCID: PMC9405864 DOI: 10.3390/biomedicines10082033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is the first-line therapy used for the treatment of PBC. In recent years, new pharmacological agents have been proposed for PBC therapy to cure UDCA-non-responders. Obeticholic acid (OCA) is registered in many countries for PBC, and fibrates also seem to be effective in ameliorating biochemistry alteration and symptoms typical of PBC. Moreover, a variety of new agents, acting with different mechanisms of action, are under clinical evaluation for PBC treatment, including PPAR agonists, anti-NOX agents, immunomodulators, and mesenchymal stem cell transplantation. Since an insufficient amount of data is currently available about the effect of these novel approaches on robust clinical endpoints, such as transplant-free survival, their clinical approval needs to be supported by the consistent improvement of these parameters. The intensive research in this field will hopefully lead to a novel treatment landscape for PBC in the near future, with innovative therapies based on the combination of multiple agents acting on different pathogenetic mechanisms.
Collapse
Affiliation(s)
- Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- IRCCS Negrar, 37024 Verona, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
9
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
10
|
Ellinghaus D. How genetic risk contributes to autoimmune liver disease. Semin Immunopathol 2022; 44:397-410. [PMID: 35650446 PMCID: PMC9256578 DOI: 10.1007/s00281-022-00950-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022]
Abstract
Genome-wide association studies (GWAS) for autoimmune hepatitis (AIH) and GWAS/genome-wide meta-analyses (GWMA) for primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) have been successful over the past decade, identifying about 100 susceptibility loci in the human genome, with strong associations with the HLA locus and many susceptibility variants outside the HLA locus with relatively low risk. However, identifying causative variants and genes and determining their effects on liver cells and their immunological microenvironment is far from trivial. Polygenic risk scores (PRSs) based on current genome-wide data have limited potential to predict individual disease risk. Interestingly, results of mediated expression score regression analysis provide evidence that a substantial portion of gene expression at susceptibility loci is mediated by genetic risk variants, in contrast to many other complex diseases. Genome- and transcriptome-wide comparisons between AIH, PBC, and PSC could help to better delineate the shared inherited component of autoimmune liver diseases (AILDs), and statistical fine-mapping, chromosome X-wide association testing, and genome-wide in silico drug screening approaches recently applied to GWMA data from PBC could potentially be successfully applied to AIH and PSC. Initial successes through single-cell RNA sequencing (scRNA-seq) experiments in PBC and PSC now raise high hopes for understanding the impact of genetic risk variants in the context of liver-resident immune cells and liver cell subpopulations, and for bridging the gap between genetics and disease.
Collapse
Affiliation(s)
- David Ellinghaus
- Institute of Clinical Molecular Biology (IKMB), Kiel University and University Medical Center Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Cholangiopathies are a heterogeneous class of liver diseases where cholangiocytes are the main targets of liver injury. Although available and emerging therapies mainly target bile acids (ursodeoxycholic acid/UDCA, 24-Norursodeoxycholic acid/norUDCA) and related signaling pathways (obeticholic acid, fibrates, FXR, and PPAR agonists), the mechanisms underlying inflammation, ductular reaction and fibrosis in cholestatic liver diseases remain poorly understood. RECENT FINDINGS Data from patients with cholestatic diseases, such as primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC) as well as mouse models of biliary injury emphasize the role of immune cells in the pathogenesis of cholestatic disorders and indicate diverse functions of hepatic macrophages. Their versatile polarization phenotypes and their capacity to interact with other cell types (e.g. cholangiocytes, other immune cells) make macrophages central actors in the progression of cholangiopathies. SUMMARY In this review, we summarize recent findings on the response of hepatic macrophages to cholestasis and biliary injury and their involvement in the progression of cholangiopathies. Furthermore, we discuss how recent discoveries may foster the development of innovative therapies to treat patients suffering from cholestatic liver diseases, in particular, treatments targeting macrophages to limit hepatic inflammation.
Collapse
|
12
|
Ustaoglu M, Aktas G, Avcioglu U, Bas B, Bahceci BK. Elevated platelet distribution width and red cell distribution width are associated with autoimmune liver diseases. Eur J Gastroenterol Hepatol 2021; 33:e905-e908. [PMID: 34643621 DOI: 10.1097/meg.0000000000002296] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Red blood cell distribution width (RDW) and platelet distribution width (PDW) are reported to be associated with inflammation. We aimed to determine the association between RDW and PDW with autoimmune liver disease (ALD). MATERIAL AND METHODS We retrospectively analyzed 126 patients who were diagnosed with ALD. Sixty-nine healthy individuals represented the control group. Characteristics and laboratory parameters of the ALD patients and control subjects were compared. RESULTS The aspartate transaminase (AST) (P < 0.001), alanine transaminase (ALT) (P < 0.001), C-reactive protein (CRP) (P < 0.001), RDW (P < 0.001) and PDW (P < 0.001) levels of the ALD group were significantly higher than those of the control subjects. RDW was significantly correlated with AST (r = 0.17, P = 0.02) and CRP (r = 0.19, P = 0.01) levels. Moreover, PDW was significantly correlated with AST (r = 0.23, P = 0.002), ALT (r = 0.23, P = 0.001) and CRP (r = 0.23, P = 0.001) levels. The sensitivity and specificity of RDW higher than 13.7% level were 76% and 62%, respectively [AUC: 0.74, P < 0.001, 95% confidence interval (CI): 0.67-0.81]. The sensitivity and specificity of PDW higher than 17.9% level were 80% and 71%, respectively (AUC: 0.85, P < 0.001, 95% CI: 0.79-0.90). The sensitivity and specificity of CRP higher than 2.9 U/l level were 92% and 85%, respectively (AUC: 0.91, P < 0.001, 95% CI: 0.86-0.95). CONCLUSION Our study demonstrates that RDW and PDW have considerable sensitivity and specificity in determining ALD.
Collapse
Affiliation(s)
- Muge Ustaoglu
- Department of Gastroenterology, Faculty of Medicine, Ondokuz Mayis University, Samsun
| | - Gulali Aktas
- Department of Internal Medicine, Faculty of Medicine, Abant Izzet Baysal University, Bolu
| | - Ufuk Avcioglu
- Department of Gastroenterology, Faculty of Medicine, Ondokuz Mayis University, Samsun
| | - Berk Bas
- Department of Gastroenterology, Faculty of Medicine, Ondokuz Mayis University, Samsun
| | - Bugra Kaan Bahceci
- Department of Internal Medicine, Ondokuz Mayis University, Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
13
|
Floreani A, De Martin S. Treatment of primary sclerosing cholangitis. Dig Liver Dis 2021; 53:1531-1538. [PMID: 34011480 DOI: 10.1016/j.dld.2021.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by progressive fibro-stenotic strictures and destruction of the biliary tree. Currently, there is no effective treatment which can delay its progression or ameliorate the transplant-free survival. Moreover, a major chontroversy in PSC is whether to use UDCA. More recently, novel pharmacological agents emerged aiming at: i) modulation of bile composition; ii) immunomodulation; iii) targeting the gut microbiome; iv) targeting fibrosis. Successful PSC therapy, however, will be most likely a personalized combination of different drugs plus endoscopic treatment. This review aims at offering an overview on the experimental pharmacological strategies currently exploited for PSC treatment.
Collapse
Affiliation(s)
- Annarosa Floreani
- Scientific Consultant, Scientific Institute for Research, Hospitalization and Healthcare, Negrar, Verona, Italy; Senior Scholar, University of Padova, Padova, Italy.
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| |
Collapse
|
14
|
Gu X, Lu Q, Zhang C, Tang Z, Chu L. Clinical Application and Progress of Fecal Microbiota Transplantation in Liver Diseases: A Review. Semin Liver Dis 2021; 41:495-506. [PMID: 34261137 PMCID: PMC8492191 DOI: 10.1055/s-0041-1732319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human gut harbors a dense and highly diverse microbiota of approximately 1,000 bacterial species. The interaction between the host and gut bacteria strongly influences human health. Numerous evidence suggest that intestinal flora imbalance is closely associated with the development and treatment of liver diseases, including acute liver injury and chronic liver diseases (cirrhosis, autoimmune liver disease, and fatty liver). Therefore, regulating the gut microbiota is expected to be a new method for the adjuvant treatment of liver diseases. Fecal microbiota transplantation (FMT) is defined as the transplantation of gut microbiota from healthy donors to sick patients via the upper or lower gastrointestinal route to restore the normal intestinal balance. In this study, we briefly review the current research on the gut microbiota and its link to liver diseases and then summarize the evidence to elucidate the clinical application and development of FMT in liver disease treatment.
Collapse
Affiliation(s)
- Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Qin Lu
- Department of Prescription Science, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chengcheng Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhewei Tang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Address for correspondence Liuxi Chu, PhD Institute of Child Development and Education, School of Biological Sciences and Medical Engineering, Southeast UniversityNanjing - 210096China
| | - Liuxi Chu
- Institute of Child Development and Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Zheng Y, Ran Y, Zhang H, Wang B, Zhou L. The Microbiome in Autoimmune Liver Diseases: Metagenomic and Metabolomic Changes. Front Physiol 2021; 12:715852. [PMID: 34690796 PMCID: PMC8531204 DOI: 10.3389/fphys.2021.715852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have identified the critical role of microbiota in the pathophysiology of autoimmune liver diseases (AILDs), including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). Metagenomic studies reveal significant decrease of gut bacterial diversity in AILDs. Although profiles of metagenomic vary widely, Veillonella is commonly enriched in AIH, PBC, and PSC. Apart from gut microbiome, the oral and bile microbiome seem to be associated with these diseases as well. The functional analysis of metagenomics suggests that metabolic pathways changed in the gut microbiome of the patients. Microbial metabolites, including short-chain fatty acids (SCFAs) and microbial bile acid metabolites, have been shown to modulate innate immunity, adaptive immunity, and inflammation. Taken together, the evidence of host–microbiome interactions and in-depth mechanistic studies needs further accumulation, which will offer more possibilities to clarify the mechanisms of AILDs and provide potential molecular targets for the prevention and treatment in the future.
Collapse
Affiliation(s)
- Yanping Zheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongxia Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gastroenterology and Hepatology, Hotan People's Hospital, Xinjiang, China
| |
Collapse
|
16
|
Measurement of Gamma Glutamyl Transferase to Determine Risk of Liver Transplantation or Death in Patients With Primary Biliary Cholangitis. Clin Gastroenterol Hepatol 2021; 19:1688-1697.e14. [PMID: 32777554 DOI: 10.1016/j.cgh.2020.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gamma-glutamyltransferase (GGT) is a serum marker of cholestasis. We investigated whether serum level of GGT is a prognostic marker for patients with primary biliary cholangitis (PBC). METHODS We analyzed data from patients with PBC from the Global PBC Study Group, comprising 14 centers in Europe and North America. We obtained measurements of serum GGT at baseline and time points after treatment. We used Cox model hazard ratios to evaluate the association between GGT and clinical outcomes, including liver transplantation and liver-related death. RESULTS Of the 2129 patients included in our analysis, 281 (13%) had a liver-related clinical endpoint. Mean age at diagnosis was 53 years and 91% of patients were female patients. We found a correlation between serum levels of GGT and alkaline phosphatase (ALP) (r = 0.71). Based on data collected at baseline and yearly for up to 5 years, higher serum levels of GGT were associated with lower hazard for transplant-free survival. Serum level of GGT at 12 months after treatment higher than 3.2-fold the upper limit of normal (ULN) identified patients who required liver transplantation or with liver-related death at 10 years with an area under the receiver operating characteristic curve of 0.70. The risk of liver transplantation or liver-related death in patients with serum level of GGT above 3.2-fold the ULN, despite level of ALP lower than 1.5-fold the ULN, was higher compared to patients with level of GGT lower than 3.2-fold the ULN and level of ALP lower than 1.5-fold the ULN (P < .05). Including information on level of GGT increased the prognostic value of the Globe score. CONCLUSIONS Serum level of GGT can be used to identify patients with PBC at risk for liver transplantation or death, and increase the prognostic value of ALP measurement. Our findings support the use of GGT as primary clinical endpoint in clinical trials. In patients with low serum level of ALP, a high level of GGT identifies those who might require treatment of metabolic disorders or PBC treatment escalation.
Collapse
|
17
|
The genetic architecture of primary biliary cholangitis. Eur J Med Genet 2021; 64:104292. [PMID: 34303876 DOI: 10.1016/j.ejmg.2021.104292] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Primary biliary cholangitis (PBC) is a rare autoimmune disease of the liver affecting the small bile ducts. From a genetic point of view, PBC is a complex trait and several genetic and environmental factors have been called in action to explain its etiopathogenesis. Similarly to other complex traits, PBC has benefited from the introduction of genome-wide association studies (GWAS), which identified many variants predisposing or protecting toward the development of the disease. While a progressive endeavour toward the characterization of candidate loci and downstream pathways is currently ongoing, there is still a relatively large portion of heritability of PBC to be revealed. In addition, genetic variation behind progression of the disease and therapeutic response are mostly to be investigated yet. This review outlines the state-of-the-art regarding the genetic architecture of PBC and provides some hints for future investigations, focusing on the study of gene-gene interactions, the application of whole-genome sequencing techniques, and the investigation of X chromosome that can be helpful to cover the missing heritability gap in PBC.
Collapse
|
18
|
Cao S, Meng X, Li Y, Sun L, Jiang L, Xuan H, Chen X. Bile Acids Elevated in Chronic Periaortitis Could Activate Farnesoid-X-Receptor to Suppress IL-6 Production by Macrophages. Front Immunol 2021; 12:632864. [PMID: 33968024 PMCID: PMC8100322 DOI: 10.3389/fimmu.2021.632864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic periaortitis (CP) is a rare autoimmune disease without effective treatment. By analyzing the serum bile acid spectrum in 28 CP patients with the ultra-performance liquid chromatography-tandem mass spectrometry, we found that the bile acids were significantly altered in CP patients, with significant increases in chenodeoxycholic acid (CDCA) and glycochenodeoxycholic acid (GCDCA) and decrease in deoxycholic acid (DCA). Signaling pathway enrichment analysis from the RNA sequencing results suggested that the altered gene sets in PBMC of CP patients were associated with bile acid metabolism. Furthermore, we found that pathological concentration of CDCA could significantly inhibited IL-6 expression in RAW 264.7 cells after LPS stimulation. Since CDCA is a well-known natural high-affinity ligand for the bile acid receptor farnesoid-x-receptor (FXR) while GW4064 is the synthetic specific agonist of this receptor, we then revealed that GW4064 significantly decreased IL-6 expression in RAW 264.7 cells and bone marrow-derived macrophages but not in FXR-/- macrophages upon LPS stimulation. The western blot results with the anti-FXR antibody showed significantly increased expression in the nuclear proportion, suggesting that FXR agonist promoted the transportation of FXR into the nucleus but did not increase the FXR expression in macrophages. Dual-luciferase report assay and ChIP assay demonstrated that upon activation, FXR could directly bind to the promoter site of IL-6, leading to the decreased expression of IL-6. Thus, bile acids, especially CDCA, may operate to damp inflammation via FXR-mediated downregulation of IL-6 in mononuclear cells and provide a protective mechanism for CP patients.
Collapse
Affiliation(s)
- Shan Cao
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Meng
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Li
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Sun
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanqing Xuan
- Department of Urology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxiang Chen
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Aghabi YO, Yasin A, Kennedy JI, Davies SP, Butler AE, Stamataki Z. Targeting Enclysis in Liver Autoimmunity, Transplantation, Viral Infection and Cancer. Front Immunol 2021; 12:662134. [PMID: 33953725 PMCID: PMC8089374 DOI: 10.3389/fimmu.2021.662134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent liver inflammation can lead to cirrhosis, which associates with significant morbidity and mortality worldwide. There are no curative treatments beyond transplantation, followed by long-term immunosuppression. The global burden of end stage liver disease has been increasing and there is a shortage of donor organs, therefore new therapies are desperately needed. Harnessing the power of the immune system has shown promise in certain autoimmunity and cancer settings. In the context of the liver, regulatory T cell (Treg) therapies are in development. The hypothesis is that these specialized lymphocytes that dampen inflammation may reduce liver injury in patients with chronic, progressive diseases, and promote transplant tolerance. Various strategies including intrinsic and extracorporeal expansion of Treg cells, aim to increase their abundance to suppress immune responses. We recently discovered that hepatocytes engulf and delete Treg cells by enclysis. Herein, we propose that inhibition of enclysis may potentiate existing regulatory T cell therapeutic approaches in patients with autoimmune liver diseases and in patients receiving a transplant. Moreover, in settings where the abundance of Treg cells could hinder beneficial immunity, such us in chronic viral infection or liver cancer, enhancement of enclysis could result in transient, localized reduction of Treg cell numbers and tip the balance towards antiviral and anti-tumor immunity. We describe enclysis as is a natural process of liver immune regulation that lends itself to therapeutic targeting, particularly in combination with current Treg cell approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Zania Stamataki
- College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Floreani A. Experimental Pharmacological Agents for the Treatment of Primary Biliary Cholangitis. J Exp Pharmacol 2020; 12:643-652. [PMID: 33364858 PMCID: PMC7751712 DOI: 10.2147/jep.s267375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
The standard therapy for primary biliary cholangitis (PBC) is ursodeoxycholic acid (UDCA) which has shown to improve hepatic biochemistry, delay histological progression and improve transplant-free survival. Approximately 30-40% of patients do not respond or are intolerant to UDCA. Obeticholic acid, a farnesoid X receptor (FXR) agonist is the only agent approved by the Food and Drug Administration for patients who do not respond to UDCA. Recently, combination therapy with UDCA and bezafibrate has been shown to improve biochemistry and both GLOBE and UK-PBC score in patients with an inadequate response to UDCA. More recently, new pharmacological agents have been included in Phase 2 and Phase 3 trials: PPAR agonists, non-bile acid FXR agonists, anti-NOX agents, immunomodulators and mesenchymal stem cells transplantation. This review gives an overview on the current experimental pharmacological agents employed in the treatment of PBC.
Collapse
Affiliation(s)
- Annarosa Floreani
- University of Padova, Padova, Italy
- Scientific Institute for Research, Hospitalization and Healthcare, Negrar, Verona, Italy
| |
Collapse
|
21
|
Yang N, Dong YQ, Jia GX, Fan SM, Li SZ, Yang SS, Li YB. ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Biomed Pharmacother 2020; 132:110835. [PMID: 33035828 DOI: 10.1016/j.biopha.2020.110835] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Bile acids has gradually become a new focus in various diseases, and ASBT as a transporter responsible for the reabsorption of ileal bile acids, is a key hinge associated to the bile acids-cholesterol balance and bile acids of enterohepatic circulation. The cumulative studies have also shown that ASBT is a promising target for treatment of liver, gallbladder, intestinal and metabolic diseases. This article briefly reviewed the process of bile acids enterohepatic circulation, as well as the regulations of ASBT expression, covering transcription factors, nuclear receptors and gut microbiota. In addition, the relationship between ASBT and various diseases were discussed in this paper. According to the structural classification of ASBT inhibitors, the research status of ASBT inhibitors and potential ASBT inhibitors of traditional Chinese medicine (such resveratrol, jatrorrhizine in Coptis chinensis) were summarized. This review provides a basis for the development of ASBT inhibitors and the treatment strategy of related diseases.
Collapse
Affiliation(s)
- Na Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Ya-Qian Dong
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Guo-Xiang Jia
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Si-Miao Fan
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shan-Ze Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shen-Shen Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Yu-Bo Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|