1
|
Wu J, Huang Q, Zhang Y, De Z, Fu H, Zhan Y, Gu Y, Xie J. Impact of BMPR2 mutation on the severity of pulmonary arterial hypertension: a systematic review and meta-analysis. Respir Res 2025; 26:74. [PMID: 40022182 PMCID: PMC11871596 DOI: 10.1186/s12931-025-03145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE To evaluate the association between PAH severity in patients with and without BMPR2 mutation. Additionally, subgroup analyses were also performed to investigate whether differences existed among different ethnicities. METHODS A literature search of the PubMed-MEDLINE, EMBASE, Web of Science, Scopus, and Cochrane Central Register of Controlled Trials databases was conducted from inception through June, 2024, to identify eligible studies. Analyses were performed using Stata. RESULTS Seventeen nonrandomized studies comprising a total of 2,190 patients were included in the analysis. Among the hemodynamic variables, the mPAP (WMD = 6.41, 95% CI: 5.07 ~ 7.76, P = 0.000), PVR (WMD = 3.66, 95% CI: 2.79 ~ 4.53, P = 0.000), CI (WMD=-0.38, 95% CI: -0.45 ~ -0.32, P = 0.000), and CO (WMD=-0.60, 95% CI: -0.99 ~ -0.21, P = 0.003) were significantly different at diagnosis between patients with and without BMPR2 mutations. No significant differences were found in RAP and PAWP. Furthermore, subgroup analysis was conducted on data showing significant differences, revealing no significant differences in mPAP and PVR between Asian and Caucasian patients with BMPR2 mutations. However, significant differences in CI and CO were observed between these two ethnic groups, with CI and CO in Caucasians being more affected by BMPR2 mutations and decreasing more than in Asians. CONCLUSION There is a statistically significant difference in the hemodynamic variables of PAH between BMPR2 mutation carriers and non-carriers, highlighting the mutation's impact on PAH severity. This influence is not associated with ethnicity in mPAP and PVR; however, it is associated with ethnicity in CI and CO, with Caucasians being more affected by BMPR2 mutations than Asians. This suggests that Caucasians may be more sensitive to BMPR2 mutations. These findings underscore the necessity of genetic testing for PAH patients, particularly among the Caucasian population. Given the poorer clinical phenotype and prognosis of BMPR2 mutation carriers, closer follow-up may be required.
Collapse
Affiliation(s)
- Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yating Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhesong De
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hao Fu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
2
|
Wang L, Liu J, Zhou L, Fu Q. Serum PM20D1 levels in patients with idiopathic pulmonary arterial hypertension and its clinical significance. BMC Cardiovasc Disord 2024; 24:207. [PMID: 38614995 PMCID: PMC11015596 DOI: 10.1186/s12872-024-03855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the serum levels of Peptidase M20 domain containing 1 (PM20D1) in idiopathic pulmonary arterial hypertension (IPAH) patients and examine its association with lipid metabolism, echocardiography, and hemodynamic parameters. METHODS This prospective observational research enrolled 103 IPAH patients from January 2018 to January 2022. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum PM20D1 levels in all patients before treatment within 24 h of admission. Demographic data, echocardiography, hemodynamic parameters and serum biomarkers were also collected. RESULTS The IPAH patients in the deceased group had significantly elevated age, right atrial (RA), mean pulmonary arterial pressure (mPAP), mean right atrial pressure (mRAP), pulmonary capillary wedge pressure (PCWP), pulmonary vascular resistance (PVR) and significantly decreased 6 min walking distance (6MWD) and tricuspid annulus peak systolic velocity (TASPV). IPAH patients showed significant decreases in serum PM20D1, low-density lipoprotein cholesterol (LDL-C), and albumin (ALB). Additionally, PM20D1 was negatively correlated with RA, NT-proBNP and positively correlated with PVR, ALB, 6MWD, and TAPSV. Moreover, PM20D1 has the potential as a biomarker for predicting IPAH patients' prognosis. Finally, logistic regression analysis indicated that PM20D1, ALB, NT-proBNP, PVR, TASPV, RA and 6MWD were identified as risk factors for mortality in IPAH patients. CONCLUSION Our findings indicated that the serum levels of PM20D1 were significantly decreased in IPAH patients with poor prognosis. Moreover, PM20D1 was identified as a risk factor associated with mortality in IPAH patients.
Collapse
Affiliation(s)
- Lin Wang
- Department of Respiratory and Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Jiaxiang Liu
- Department of Cardiology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Liufang Zhou
- Department of Anesthesiology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Qingmei Fu
- Department of Ultrasound, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No.116, Changjiang South Road, Tianyuan District, Zhuzhou City, 412000, Hunan Province, P.R. China.
| |
Collapse
|
3
|
Knight H, Abis G, Kaur M, Green HL, Krasemann S, Hartmann K, Lynham S, Clark J, Zhao L, Ruppert C, Weiss A, Schermuly RT, Eaton P, Rudyk O. Cyclin D-CDK4 Disulfide Bond Attenuates Pulmonary Vascular Cell Proliferation. Circ Res 2023; 133:966-988. [PMID: 37955182 PMCID: PMC10699508 DOI: 10.1161/circresaha.122.321836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a chronic vascular disease characterized, among other abnormalities, by hyperproliferative smooth muscle cells and a perturbed cellular redox and metabolic balance. Oxidants induce cell cycle arrest to halt proliferation; however, little is known about the redox-regulated effector proteins that mediate these processes. Here, we report a novel kinase-inhibitory disulfide bond in cyclin D-CDK4 (cyclin-dependent kinase 4) and investigate its role in cell proliferation and PH. METHODS Oxidative modifications of cyclin D-CDK4 were detected in human pulmonary arterial smooth muscle cells and human pulmonary arterial endothelial cells. Site-directed mutagenesis, tandem mass-spectrometry, cell-based experiments, in vitro kinase activity assays, in silico structural modeling, and a novel redox-dead constitutive knock-in mouse were utilized to investigate the nature and definitively establish the importance of CDK4 cysteine modification in pulmonary vascular cell proliferation. Furthermore, the cyclin D-CDK4 oxidation was assessed in vivo in the pulmonary arteries and isolated human pulmonary arterial smooth muscle cells of patients with pulmonary arterial hypertension and in 3 preclinical models of PH. RESULTS Cyclin D-CDK4 forms a reversible oxidant-induced heterodimeric disulfide dimer between C7/8 and C135, respectively, in cells in vitro and in pulmonary arteries in vivo to inhibit cyclin D-CDK4 kinase activity, decrease Rb (retinoblastoma) protein phosphorylation, and induce cell cycle arrest. Mutation of CDK4 C135 causes a kinase-impaired phenotype, which decreases cell proliferation rate and alleviates disease phenotype in an experimental mouse PH model, suggesting this cysteine is indispensable for cyclin D-CDK4 kinase activity. Pulmonary arteries and human pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension display a decreased level of CDK4 disulfide, consistent with CDK4 being hyperactive in human pulmonary arterial hypertension. Furthermore, auranofin treatment, which induces the cyclin D-CDK4 disulfide, attenuates disease severity in experimental PH models by mitigating pulmonary vascular remodeling. CONCLUSIONS A novel disulfide bond in cyclin D-CDK4 acts as a rapid switch to inhibit kinase activity and halt cell proliferation. This oxidative modification forms at a critical cysteine residue, which is unique to CDK4, offering the potential for the design of a selective covalent inhibitor predicted to be beneficial in PH.
Collapse
Affiliation(s)
- Hannah Knight
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, United Kingdom (G.A.)
| | - Manpreet Kaur
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Hannah L.H. Green
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Steven Lynham
- Proteomics Core Facility, Centre of Excellence for Mass Spectrometry (S.L.), King’s College London, United Kingdom
| | - James Clark
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (L.Z.)
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center Giessen Biobank, Justus-Liebig-University Giessen, Germany (C.R.)
| | - Astrid Weiss
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Ralph T. Schermuly
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Philip Eaton
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.E.)
| | - Olena Rudyk
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| |
Collapse
|
4
|
Ainscough AJ, Smith TJ, Haensel M, Rhodes CJ, Fellows A, Whitwell HJ, Vasilaki E, Gray K, Freeman A, Howard LS, Wharton J, Dunmore B, Upton PD, Wilkins MR, Edel JB, Wojciak-Stothard B. An organ-on-chip model of pulmonary arterial hypertension identifies a BMPR2-SOX17-prostacyclin signalling axis. Commun Biol 2022; 5:1192. [PMID: 36344664 PMCID: PMC9640600 DOI: 10.1038/s42003-022-04169-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an unmet clinical need. The lack of models of human disease is a key obstacle to drug development. We present a biomimetic model of pulmonary arterial endothelial-smooth muscle cell interactions in PAH, combining natural and induced bone morphogenetic protein receptor 2 (BMPR2) dysfunction with hypoxia to induce smooth muscle activation and proliferation, which is responsive to drug treatment. BMPR2- and oxygenation-specific changes in endothelial and smooth muscle gene expression, consistent with observations made in genomic and biochemical studies of PAH, enable insights into underlying disease pathways and mechanisms of drug response. The model captures key changes in the pulmonary endothelial phenotype that are essential for the induction of SMC remodelling, including a BMPR2-SOX17-prostacyclin signalling axis and offers an easily accessible approach for researchers to study pulmonary vascular remodelling and advance drug development in PAH.
Collapse
Affiliation(s)
- Alexander J Ainscough
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Chemistry, Imperial College London, London, UK
| | - Timothy J Smith
- Department of Chemistry, Imperial College London, London, UK
| | - Maike Haensel
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Adam Fellows
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Harry J Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Eleni Vasilaki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kelly Gray
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Adrian Freeman
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Luke S Howard
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Benjamin Dunmore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, London, UK
| | | |
Collapse
|
5
|
Wei Y, Giunta S, Xia S. Hypoxia in Aging and Aging-Related Diseases: Mechanism and Therapeutic Strategies. Int J Mol Sci 2022; 23:8165. [PMID: 35897741 PMCID: PMC9330578 DOI: 10.3390/ijms23158165] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
As the global aging process continues to lengthen, aging-related diseases (e.g., chronic obstructive pulmonary disease (COPD), heart failure) continue to plague the elderly population. Aging is a complex biological process involving multiple tissues and organs and is involved in the development and progression of multiple aging-related diseases. At the same time, some of these aging-related diseases are often accompanied by hypoxia, chronic inflammation, oxidative stress, and the increased secretion of the senescence-associated secretory phenotype (SASP). Hypoxia seems to play an important role in the process of inflammation and aging, but is often neglected in advanced clinical research studies. Therefore, we have attempted to elucidate the role played by different degrees and types of hypoxia in aging and aging-related diseases and their possible pathways, and propose rational treatment options based on such mechanisms for reference.
Collapse
Affiliation(s)
- Yaqin Wei
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200000, China;
| | - Sergio Giunta
- Casa di Cura Prof. Nobili–GHC Garofalo Health Care, 40035 Bologna, Italy;
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200000, China;
| |
Collapse
|
6
|
Evaluation of Oxidative Status in Elderly Patients with Multiple Cerebral Infarctions and Multiple Chronic Total Coronary Occlusions. DISEASE MARKERS 2022; 2022:2083990. [PMID: 35801004 PMCID: PMC9256345 DOI: 10.1155/2022/2083990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Background. Oxidative stress plays a key role in atherosclerosis. Acting via high level of reactive oxygen species, an increase of oxidative stress is involved in the pathogenesis and progression of atherosclerostic stenosis or occlusion of arteries. Oxidative stress leads to an accumulation of oxidized low-density lipoprotein, which plays important roles in steno-occlusion of cerebral and coronary arteries. However, the exact reasons for multiple cerebral and coronary artery steno-occlusion in elderly patients remain unclear. The aim was to evaluate the effects of imbalance of oxidative/antioxidative status on concomitant multiple brain infarcts and multiple chronic total coronary occlusions in elderly patients. Methods. We measured the circulating levels of malondialdehyde (MDA), reactive oxygen species (ROS), thiobarbituric acid reactive substance (TBARS), advanced oxidation protein products (AOPP), superoxide dismutase 1 (SOD 1), superoxide dismutase 2 (SOD 2), superoxide dismutase 3 (SOD 3), and paraoxonase 1 (PON 1) in patients with concomitant multiple cerebral infarcts and multiple chronic total coronary occlusions. Results. Circulating levels of oxidative stress markers (MDA, ROS, TBARS, and AOPP) were increased (
) and antioxidative stress markers (SOD 1, SOD 2, SOD 3, and PON 1) were decreased (
) in elderly patients with concomitant multiple brain infarcts and multiple chronic total coronary occlusions. Conclusions. The findings suggested that the imbalance of oxidative/antioxidative status may be associated with multiple cerebral infarcts and multiple chronic total coronary occlusions and may contribute to the development of concomitant multiple brain infarcts and multiple chronic total coronary occlusions in elderly patients.
Collapse
|
7
|
Metabolism, Mitochondrial Dysfunction, and Redox Homeostasis in Pulmonary Hypertension. Antioxidants (Basel) 2022; 11:antiox11020428. [PMID: 35204311 PMCID: PMC8869288 DOI: 10.3390/antiox11020428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Pulmonary hypertension (PH) represents a group of disorders characterized by elevated mean pulmonary artery (PA) pressure, progressive right ventricular failure, and often death. Some of the hallmarks of pulmonary hypertension include endothelial dysfunction, intimal and medial proliferation, vasoconstriction, inflammatory infiltration, and in situ thrombosis. The vascular remodeling seen in pulmonary hypertension has been previously linked to the hyperproliferation of PA smooth muscle cells. This excess proliferation of PA smooth muscle cells has recently been associated with changes in metabolism and mitochondrial biology, including changes in glycolysis, redox homeostasis, and mitochondrial quality control. In this review, we summarize the molecular mechanisms that have been reported to contribute to mitochondrial dysfunction, metabolic changes, and redox biology in PH.
Collapse
|
8
|
Radovanovic J, Banjac K, Obradovic M, Isenovic ER. Antioxidant enzymes and vascular diseases. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a fundamental role in regulating endothelial function and vascular tone in the physiological conditions of a vascular system. However, oxidative stress has detrimental effects on human health, and numerous studies confirmed that high ROS/RNS production contributes to the initiation and progression of cardiovascular diseases. The antioxidant defense has an essential role in the homeostatic functioning of the vascular endothelial system. Endogenous antioxidative defense includes various molecules and enzymes such as superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase. Together all these antioxidative enzymes are essential for defense against harmful ROS features. ROS are mainly generated from redox-active compounds involved in the mitochondrial respiratory chain. Thus, targeting antioxidative enzymes and mitochondria oxidative balance may be a promising approach for vascular diseases occurrence and treatment. This review summarized the most recent research on the regulation of antioxidative enzymes in vascular diseases.
Collapse
Affiliation(s)
- Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| | - Katarina Banjac
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| |
Collapse
|
9
|
Bridle TG, Kumarathasan P, Gailer J. Toxic Metal Species and 'Endogenous' Metalloproteins at the Blood-Organ Interface: Analytical and Bioinorganic Aspects. Molecules 2021; 26:molecules26113408. [PMID: 34199902 PMCID: PMC8200099 DOI: 10.3390/molecules26113408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 01/15/2023] Open
Abstract
Globally, human exposure to environmental pollutants causes an estimated 9 million deaths per year and it could also be implicated in the etiology of diseases that do not appear to have a genetic origin. Accordingly, there is a need to gain information about the biomolecular mechanisms that causally link exposure to inorganic environmental pollutants with distinct adverse health effects. Although the analysis of blood plasma and red blood cell (RBC) cytosol can provide important biochemical information about these mechanisms, the inherent complexity of these biological matrices can make this a difficult task. In this perspective, we will examine the use of metalloentities that are present in plasma and RBC cytosol as potential exposure biomarkers to assess human exposure to inorganic pollutants. Our primary objective is to explore the principal bioinorganic processes that contribute to increased or decreased metalloprotein concentrations in plasma and/or RBC cytosol. Furthermore, we will also identify metabolites which can form in the bloodstream and contain essential as well as toxic metals for use as exposure biomarkers. While the latter metal species represent useful biomarkers for short-term exposure, endogenous plasma metalloproteins represent indicators to assess the long-term exposure of an individual to inorganic pollutants. Based on these considerations, the quantification of metalloentities in blood plasma and/or RBC cytosol is identified as a feasible research avenue to better understand the adverse health effects that are associated with chronic exposure of various human populations to inorganic pollutants. Exposure to these pollutants will likely increase as a consequence of technological advances, including the fast-growing applications of metal-based engineering nanomaterials.
Collapse
Affiliation(s)
- Tristen G. Bridle
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Premkumari Kumarathasan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Jürgen Gailer
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Correspondence:
| |
Collapse
|
10
|
Fabro AT, Machado-Rugolo J, Baldavira CM, Prieto TG, Farhat C, Rotea ManGone FR, Batah SS, Cruvinel HR, Aldá MA, Monteiro JS, Pádua AI, Morais SS, Antônio de Oliveira R, Santos MK, Baddini-Martinez JA, Setubal JC, Rainho CA, Yoo HHB, Silva PL, Nagai MA, Capelozzi VL. Circulating Plasma miRNA and Clinical/Hemodynamic Characteristics Provide Additional Predictive Information About Acute Pulmonary Thromboembolism, Chronic Thromboembolic Pulmonary Hypertension and Idiopathic Pulmonary Hypertension. Front Pharmacol 2021; 12:648769. [PMID: 34122072 PMCID: PMC8194827 DOI: 10.3389/fphar.2021.648769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary artery hypertension (IPAH), chronic thromboembolic pulmonary hypertension (CTEPH), and acute pulmonary embolism (APTE) are life-threatening cardiopulmonary diseases without specific surgical or medical treatment. Although APTE, CTEPH and IPAH are different pulmonary vascular diseases in terms of clinical presentation, prevalence, pathophysiology and prognosis, the identification of their circulating microRNA (miRNAs) might help in recognizing differences in their outcome evolution and clinical forms. The aim of this study was to describe the APTE, CTEPH, and IPAH-associated miRNAs and to predict their target genes. The target genes of the key differentially expressed miRNAs were analyzed, and functional enrichment analyses were carried out. The miRNAs were detected using RT-PCR. Finally, we incorporated plasma circulating miRNAs in baseline and clinical characteristics of the patients to detect differences between APTE and CTEPH in time of evolution, and differences between CTEPH and IPAH in diseases form. We found five top circulating plasma miRNAs in common with APTE, CTEPH and IPAH assembled in one conglomerate. Among them, miR-let-7i-5p expression was upregulated in APTE and IPAH, while miRNA-320a was upregulated in CTEP and IPAH. The network construction for target genes showed 11 genes regulated by let-7i-5p and 20 genes regulated by miR-320a, all of them regulators of pulmonary arterial adventitial fibroblasts, pulmonary artery endothelial cell, and pulmonary artery smooth muscle cells. AR (androgen receptor), a target gene of hsa-let-7i-5p and has-miR-320a, was enriched in pathways in cancer, whereas PRKCA (Protein Kinase C Alpha), also a target gene of hsa-let-7i-5p and has-miR-320a, was enriched in KEGG pathways, such as pathways in cancer, glioma, and PI3K-Akt signaling pathway. We inferred that CTEPH might be the consequence of abnormal remodeling in APTE, while unbalance between the hyperproliferative and apoptosis-resistant phenotype of pulmonary arterial adventitial fibroblasts, pulmonary artery endothelial cell and pulmonary artery smooth muscle cells in pulmonary artery confer differences in IPAH and CTEPH diseases form. We concluded that the incorporation of plasma circulating let-7i-5p and miRNA-320a in baseline and clinical characteristics of the patients reinforces differences between APTE and CTEPH in outcome evolution, as well as differences between CTEPH and IPAH in diseases form.
Collapse
Affiliation(s)
- Alexandre Todorovic Fabro
- Department of Pathology, Laboratory of Histomorphometry and Lung Genomics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Department of Pathology and Legal Medicine, Respiratory Medicine Laboratory, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Juliana Machado-Rugolo
- Department of Pathology, Laboratory of Histomorphometry and Lung Genomics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Health Technology Assessment Center (NATS), Clinical Hospital (HCFMB), Medical School of São Paulo State University (UNESP), Botucatu, Brazil
| | - Camila Machado Baldavira
- Department of Pathology, Laboratory of Histomorphometry and Lung Genomics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tabatha Gutierrez Prieto
- Department of Pathology, Laboratory of Histomorphometry and Lung Genomics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cecília Farhat
- Department of Pathology, Laboratory of Histomorphometry and Lung Genomics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Flavia Regina Rotea ManGone
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of São Paulo (ICESP), São Paulo, Brazil
| | - Sabrina Setembre Batah
- Department of Pathology and Legal Medicine, Respiratory Medicine Laboratory, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Heloísa Resende Cruvinel
- Department of Pathology and Legal Medicine, Respiratory Medicine Laboratory, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Maiara Almeida Aldá
- Department of Pathology and Legal Medicine, Respiratory Medicine Laboratory, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Jhonatas Sirino Monteiro
- Bioinformatic Laboratory, Institute of Chemistry, University of São Paulo (USP), São Paulo, Brazil
| | - Adriana Inacio Pádua
- Pulmonary Hypertension Care Center, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Sirlei Siani Morais
- Department of Pathology and Legal Medicine, Respiratory Medicine Laboratory, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Rogério Antônio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Marcel Koenigkam Santos
- Pulmonary Hypertension Care Center, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - José Antônio Baddini-Martinez
- Pulmonary Hypertension Care Center, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - João Carlos Setubal
- Bioinformatic Laboratory, Institute of Chemistry, University of São Paulo (USP), São Paulo, Brazil
| | - Claudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Hugo Hyung Bok Yoo
- Pulmonary Hypertension Care Center, Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), São Paulo, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Maria Aparecida Nagai
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of São Paulo (ICESP), São Paulo, Brazil.,Department of Radiology and Oncology, Medical School of São Paulo State University (UNESP), São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Laboratory of Histomorphometry and Lung Genomics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|