1
|
Cao X, Xiao X, Jiang P, Fu N. Construction and evaluation of a diagnostic model for metabolic dysfunction-associated steatotic liver disease based on advanced glycation end products and their receptors. Front Med (Lausanne) 2025; 12:1539708. [PMID: 40224638 PMCID: PMC11985537 DOI: 10.3389/fmed.2025.1539708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Background Effective biomarkers for the diagnosis of metabolic dysfunction-associated steatotic liver disease (MASLD) remain limited. This study aims to evaluate the potential of advanced glycation end products (AGEs) and their endogenous secretory receptor (esRAGE) as non-invasive biomarkers for diagnosing MASLD, to explore differences between obese and non-obese MASLD patients, and to develop a novel diagnostic model based on these biomarkers. Methods This study enrolled 341 participants, including 246 MASLD patients (118 non-obese, 128 obese) and 95 healthy controls. Serum AGEs and esRAGE levels were measured by ELISA. Key predictors were identified using the Lasso algorithm, and a diagnostic model was developed with logistic regression and visualized as nomograms. Diagnostic accuracy and utility were evaluated through the area under the curve (AUC), bootstrap validation, calibration curves, and decision curve analysis (DCA). Results Serum AGEs and esRAGE levels were significantly higher in MASLD patients compared to controls. Moreover, obese MASLD patients had higher esRAGE levels than non-obese ones, but no significant difference in AGEs levels was found. A diagnostic model incorporating age, WC, BMI, ALT, TG, HDL, AGEs, and esRAGE achieved an AUC of 0.963, with 94.3% sensitivity and 85.3% specificity. The AUC for bootstrap internal validation was 0.963 (95% CI: 0.944-0.982). Calibration curves showed strong predictive accuracy, and DCA demonstrated high net clinical benefit. Conclusion Serum AGEs and esRAGE serve as non-invasive biomarkers for distinguishing MASLD patients. We developed and validated diagnostic models for MASLD, offering valuable tools to identify at-risk populations and improve prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | - Peipei Jiang
- Department of Gastroenterology, Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Diseases, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nian Fu
- Department of Gastroenterology, Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Diseases, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Lee JA, Gu MJ, Lee YR, Kim Y, Choi I, Kim D, Ha SK. Lindera obtusiloba Blume Alleviates Non-Alcoholic Fatty Liver Disease Promoted by N ε-(carboxymethyl)lysine. Nutrients 2024; 16:2330. [PMID: 39064772 PMCID: PMC11280000 DOI: 10.3390/nu16142330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major issue because it is closely associated with metabolic diseases. Advanced glycation end products (AGEs) are implicated as risk factors for steatosis during NAFLD progression. AGEs influence NAFLD progression through a receptor-independent pathway involving AGE cross-link formation and a receptor-dependent pathway that binds to receptors like receptors for advanced glycation end products (RAGE). The objectives of this study are to examine the effect of Lindera obtusiloba Blume (LO) on NAFLD promoted by Nε-(carboxymethyl)lysine (CML), one of the most common dietary AGEs. The anti-glycation effects of LO were evaluated by inhibiting the AGEs formation and AGEs-collagen cross-links breaking. The efficacy of LO against NAFLD promoted by CML was assessed using both in vitro and in vivo models. NAFLD was induced in mice by feeding a high-fat diet and orally administering CML over a period of 12 weeks, and the effects of LO on lipid metabolism and its regulatory mechanisms were investigated. LO showed the effect of inhibited AGEs formation and breakage, and collagen cross-linking. Fed a high-fat diet with administered CML by gavage, LO administration resulted in a reduction in body weight, fat mass, serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels. LO reduced hepatic CML accumulation and RAGE expression in mice fed a high-fat diet and orally administered CML. LO alleviated hepatic steatosis accompanied by lipid accumulation and histological damage by suppressing the expression of sterol regulatory element-binding protein 1c, carbohydrate response element binding protein, fatty acid synthase, stearoyl-CoA desaturase1, tumor necrosis factor-α, and interleukin-1β. LO alleviated the MAPK/NF-κB expression by attenuating CML and RAGE expression. Taken together, our results demonstrate that LO alleviates the progression of NAFLD by lowering the levels of AGEs by downregulating CML/RAGE expression.
Collapse
Affiliation(s)
- Jin-Ah Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Min Ji Gu
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Yu Ra Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Yoonsook Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Inwook Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Donghwan Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Sang Keun Ha
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
4
|
Zhao X, Kong X, Cui Z, Zhang Z, Wang M, Liu G, Gao H, Zhang J, Qin W. Communication between nonalcoholic fatty liver disease and atherosclerosis: Focusing on exosomes. Eur J Pharm Sci 2024; 193:106690. [PMID: 38181871 DOI: 10.1016/j.ejps.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder on a global scale. Atherosclerosis (AS), a leading cause of cardiovascular diseases, stands as the primary contributor to mortality among patients diagnosed with NAFLD. However, the precise etiology by which NAFLD causes AS remains unclear. Exosomes are nanoscale extracellular vesicles secreted by cells, and are considered to participate in complex biological processes by promoting cell-to-cell and organ-to-organ communications. As vesicles containing protein, mRNA, non-coding RNA and other bioactive molecules, exosomes can participate in the development of NAFLD and AS respectively. Recently, studies have shown that NAFLD can also promote the development of AS via secreting exosomes. Herein, we summarized the recent advantages of exosomes in the pathogenesis of NAFLD and AS, and highlighted the role of exosomes in mediating the information exchange between NAFLD and AS. Further, we discussed how exosomes play a prominent role in enabling information exchange among diverse organs, delving into a novel avenue for investigating the link between diseases and their associated complications. The future directions and emerging challenges are also listed regarding the exosome-based therapeutic strategies for AS under NAFLD conditions.
Collapse
Affiliation(s)
- Xiaona Zhao
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Xinxin Kong
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Zhoujun Cui
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, China.
| |
Collapse
|
5
|
Yuan X, Bai Y, Zhang J, Zhai R, Nie C, Tu A, Li S, Chen Z, Zhang M, Li J. Comparison of tissue distribution of free and protein bound Nɛ-carboxymethyllysine after long-term oral administration to mice. Food Res Int 2022; 161:111787. [DOI: 10.1016/j.foodres.2022.111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
|
6
|
Loss of RAGE prevents chronic intermittent hypoxia-induced nonalcoholic fatty liver disease via blockade of NF-кB pathway. Gene Ther 2022; 30:278-287. [PMID: 35821256 DOI: 10.1038/s41434-022-00351-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
In recent years, receptor for advanced glycation end-products (RAGE) has been documented to induce liver fibrosis and inflammatory reaction. Further, microarray data analysis of this study predicted high expression of RAGE in non-alcoholic fatty liver disease (NAFLD). However, its specific mechanisms remain to be elucidated. Hence, this study is aimed at investigating the mechanistic insights of RAGE in chronic intermittent hypoxia (CIH)-induced NAFLD. ApoE knockout (ApoE-/-) mice were exposed to CIH to induce NAFLD, and primary hepatocytes were also exposed to CIH to mimic in vitro setting. Accordingly, we found that RAGE and NF-κB were upregulated in the liver tissues of CIH-induced NAFLD mice and CIH-exposed hepatocytes. Depleted RAGE attenuated CIH-induced hepatocyte injury, lipid deposition, and inflammation. The relationship between RAGE and NF-κB was analyzed by in silico analysis and correlation analysis. It was demonstrated that knockdown of RAGE inhibited the NF-кB pathway, thus alleviating CIH-induced disorders in hepatocytes. Moreover, in vivo experiments also verified that depletion of RAGE alleviated CIH-induced NAFLD by inhibiting NF-кB pathway. Collectively, loss of RAGE blocked the NF-кB pathway to alleviate CIH-induced NAFLD, therefore, highlighting a potential hepatoprotective target for treating NAFLD.
Collapse
|
7
|
Ji J, Feng M, Huang Y, Niu X. Liraglutide inhibits receptor for advanced glycation end products (RAGE)/reduced form of nicotinamide-adenine dinucleotide phosphate (NAPDH) signaling to ameliorate non-alcoholic fatty liver disease (NAFLD) in vivo and vitro. Bioengineered 2022; 13:5091-5102. [PMID: 35164657 PMCID: PMC8974036 DOI: 10.1080/21655979.2022.2036902] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The study was designed to investigate the effects of liraglutide and reveal its action mechanism associated with RAGE/NAPDH in NAFLD. The liver tissue was collected for HE, Masson, and ROS staining. Apoptosis levels were detected through TUNEL staining and ROS levels were evaluated through ROS staining. The expression levels of c-Jun N-terminal kinase (JNK) and transforming growth factor-β (TGF-β) were detected through Western blot. JNK and the expression of Collagenα1, Collagenα2 and connective tissue growth factor (CTGF) were detected through RT-qPCR and Western blot and the expression in mouse liver stellate cells (JS-1) cells were evaluated through immunofluorescence staining. We detected the effects of liraglutide on NAFLD in high-fat diet (HFD)-fed mice. Liraglutide treatment improved bridging fibrosis and liver function, as well as lessening ROS levels and the protein levels of RAGE, NOX1, NOX2 and NOX4. In PA and H2O2-induced AML12 cells, liraglutide treatment was able to decrease cell apoptosis, ROS levels and the levels of inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, while it effects were reversed by the induction of RAGE overexpression or NOX2 overexpression. In JS-1 cells treated with medium culturing AML12 cells, liraglutide markedly suppressed cell proliferation and activation, while RAGE overexpression or NOX2 overexpression blunted these effects of liraglutide. Taken together, liraglutide exerts a protective role in improving liver injury caused by HFD, which could be related to decreased apoptosis and oxidative stress of liver cells, as well as decreased proliferation and activation of hepatic stellate cells through RAGE/NOX2.
Collapse
Affiliation(s)
- Jingquan Ji
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Ming Feng
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, Shanxi, China
| | - Yan Huang
- Department of Biochemistry, Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaohong Niu
- Department of Endocrinology, The Heji Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
8
|
Oxidative Stress and Mitochondrial Damage in Dry Age-Related Macular Degeneration Like NFE2L2/PGC-1α -/- Mouse Model Evoke Complement Component C5a Independent of C3. BIOLOGY 2021; 10:biology10070622. [PMID: 34356477 PMCID: PMC8301195 DOI: 10.3390/biology10070622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Aging-associated chronic oxidative stress and inflammation are known to be involved in various diseases, e.g., age-related macular degeneration (AMD). Previously, we reported the presence of dry AMD-like signs, such as elevated oxidative stress, dysfunctional mitophagy and the accumulation of detrimental oxidized materials in the retinal pigment epithelial (RPE) cells of nuclear factor erythroid 2-related factor 2, and a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (NFE2L2/PGC1α) double knockout (dKO) mouse model. Here, we investigated the dynamics of inflammatory markers in one-year-old NFE2L2/PGC1α dKO mice. Immunohistochemical analysis revealed an increase in levels of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in NFE2L2/PGC1α dKO retinal specimens as compared to wild type animals. Further analysis showed a trend towards an increase in complement component C5a independent of component C3, observed to be tightly regulated by complement factor H. Interestingly, we found that thrombin, a serine protease enzyme, was involved in enhancing the terminal pathway producing C5a, independent of C3. We also detected an increase in primary acute phase C-reactive protein and receptor for advanced glycation end products in NFE2L2/PGC1α dKO retina. Our main data show C5 and thrombin upregulation together with decreased C3 levels in this dry AMD-like model. In general, the retina strives to mount an orchestrated inflammatory response while attempting to maintain tissue homeostasis and resolve inflammation.
Collapse
|
9
|
The Role of Oxidative Stress in NAFLD-NASH-HCC Transition-Focus on NADPH Oxidases. Biomedicines 2021; 9:biomedicines9060687. [PMID: 34204571 PMCID: PMC8235710 DOI: 10.3390/biomedicines9060687] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
A peculiar role for oxidative stress in non-alcoholic fatty liver disease (NAFLD) and its transition to the inflammatory complication non-alcoholic steatohepatitis (NASH), as well as in its threatening evolution to hepatocellular carcinoma (HCC), is supported by numerous experimental and clinical studies. NADPH oxidases (NOXs) are enzymes producing reactive oxygen species (ROS), whose abundance in liver cells is closely related to inflammation and immune responses. Here, we reviewed recent findings regarding this topic, focusing on the role of NOXs in the different stages of fatty liver disease and describing the current knowledge about their mechanisms of action. We conclude that, although there is a consensus that NOX-produced ROS are toxic in non-neoplastic conditions due to their role in the inflammatory vicious cycle sustaining the transition of NAFLD to NASH, their effect is controversial in the neoplastic transition towards HCC. In this regard, there are indications of a differential effect of NOX isoforms, since NOX1 and NOX2 play a detrimental role, whereas increased NOX4 expression appears to be correlated with better HCC prognosis in some studies. Further studies are needed to fully unravel the mechanisms of action of NOXs and their relationships with the signaling pathways modulating steatosis and liver cancer development.
Collapse
|
10
|
Petriv N, Neubert L, Vatashchuk M, Timrott K, Suo H, Hochnadel I, Huber R, Petzold C, Hrushchenko A, Yatsenko AS, Shcherbata HR, Wedemeyer H, Lichtinghagen R, Falfushynska H, Lushchak V, Manns MP, Bantel H, Semchyshyn H, Yevsa T. Increase of α-dicarbonyls in liver and receptor for advanced glycation end products on immune cells are linked to nonalcoholic fatty liver disease and liver cancer. Oncoimmunology 2021; 10:1874159. [PMID: 33628620 PMCID: PMC7889131 DOI: 10.1080/2162402x.2021.1874159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver with a very poor prognosis and constantly growing incidence. Among other primary risks of HCC, metabolic disorders and obesity have been extensively investigated over recent decades. The latter can promote nonalcoholic fatty liver disease (NAFLD) leading to the inflammatory form of nonalcoholic steatohepatitis (NASH), that, in turn, promotes HCC. Molecular determinants of this pathogenic progression, however, remain largely undefined. In this study, we have focussed on the investigation of α-dicarbonyl compounds (α-dC), highly reactive and tightly associated with overweight-induced metabolic disorders, and studied their potential role in NAFLD and progression toward HCC using murine models. NAFLD was induced using high-fat diet (HFD). Autochthonous HCC was induced using transposon-based stable intrahepatic overexpression of oncogenic NRASG12V in mice lacking p19Arf tumor suppressor. Our study demonstrates that the HFD regimen and HCC resulted in strong upregulation of α-dC in the liver, heart, and muscles. In addition, an increase in α-dC was confirmed in sera of NAFLD and NASH patients. Furthermore, higher expression of the receptor for advanced glycation products (RAGE) was detected exclusively on immune cells and not on stroma cells in livers of mice with liver cancer progression. Our work confirms astable interplay of liver inflammation, carbonyl stress mediated by α-dC, and upregulated RAGE expression on CD8+ Tand natural killer (NK) cells in situ in NAFLD and HCC, as key factors/determinants in liver disease progression. The obtained findings underline the role of α-dC and RAGE+CD8+ Tand RAGE+ NK cells as biomarkers and candidates for a local therapeutic intervention in NAFLD and malignant liver disease.
Collapse
Affiliation(s)
- Nataliia Petriv
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Myroslava Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Kai Timrott
- Department of General-, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Inga Hochnadel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - René Huber
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Anastasiia Hrushchenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Germany
| | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Halina Falfushynska
- Department of Biochemistry, Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Volodymyr Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|