1
|
Lin Y, Zhang S, Chen Z, Lin X, Wang X, Shen X, Huang L, Deng Y, Chen C. Stress hyperglycemia ratio as a predictor of acute kidney injury and its outcomes in critically ill patients. Ren Fail 2025; 47:2499228. [PMID: 40321025 PMCID: PMC12054585 DOI: 10.1080/0886022x.2025.2499228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/20/2025] [Indexed: 05/08/2025] Open
Abstract
This study investigated stress hyperglycemia ratio (SHR) for acute kidney injury (AKI) and clinical outcomes in intensive care unit (ICU). Key outcomes were AKI within 48 h after ICU admission, acute kidney disease (AKD), ICU mortality, 28-day mortality, 90-day mortality and 1-year mortality. The associations between SHR and outcomes was estimated via logistic regression, Cox proportional hazards regression, and restricted cubic spline (RCS) analyses. Subgroup analyses assessed the consistency of these associations. Totally 3,714 patients were included from the Medical Information Mart for Intensive Care IV. SHR was associated with an increased risk of AKI (ORadjusted 1.29 95%CI 1.05-1.59). Among AKI patients, SHR was associated with increased risks of AKD (ORadjusted 1.94 95%CI 1.57-2.39), ICU mortality (ORadjusted 2.31 95%CI 1.60-3.32), 28-day mortality (HRadjusted 1.39 95%CI 1.29-1.50), 90-day mortality (HRadjusted 1.37 95%CI 1.26-1.48), and 1-year mortality (HRadjusted 1.37 95%CI 1.27-1.47). RCS analysis revealed a linear relationship with AKI, a J-shaped relationship with AKD, and a U-shaped relationship with mortality. Subgroup analysis confirmed the consistency of relationship between SHR and AKI. SHR demonstrates significant associations with AKI incidence, and correlates with AKD progression/mortality in critically ill adult ICU patients, suggesting its potential as a risk stratification and prognostic tool for AKI management, though further prospective validation is required.
Collapse
Affiliation(s)
- Yingxin Lin
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Intensive Care Unit, Peking University Shenzhen Hospital, Shenzhen, China
| | - Sheng Zhang
- Department of Intensive Care Unit, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zeling Chen
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xuwei Lin
- Department of Intensive Care Unit, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xueqing Wang
- Department of Intensive Care Unit, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaojun Shen
- Department of Intensive Care Unit, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lei Huang
- Department of Intensive Care Unit, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Chen X, Wang Y, Wan J, Dou X, Zhang C, Sun M, Ye F. Quercetin alleviates liver fibrosis via regulating glycolysis of liver sinusoidal endothelial cells and neutrophil infiltration. BIOMOLECULES & BIOMEDICINE 2024; 24:1806-1815. [PMID: 38943679 PMCID: PMC11496877 DOI: 10.17305/bb.2024.10530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
Liver fibrosis, a common characteristic in various chronic liver diseases, is largely influenced by glycolysis. Quercetin (QE), a natural flavonoid known to regulate glycolysis, was studied for its effects on liver fibrosis and its underlying mechanism. In a model of liver fibrosis induced by carbon tetrachloride (CCl4), we aimed to assess pathological features, serum marker levels, and analyze the expression of glycolysis-related enzymes at both mRNA and protein levels, with a focus on changes in liver sinusoidal endothelial cells (LSECs). Our results showed that QE effectively improved liver injury and fibrosis evident by improved pathological features and lowered levels of serum markers, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), total bile acid (TBA), total bilirubin (TBIL), direct bilirubin (DBIL), hyaluronic acid (HA), laminin (LN), and procollagen type III (PCIII). QE also decreased lactate production and downregulated the expression of glycolysis-related enzymes-pyruvate kinase M2 (PKM2), phosphofructokinase platelet (PFKP), and hexokinase II (HK2)-at both the mRNA and protein levels. QE reduced the expression and activity of these enzymes, resulting in reduced glucose consumption, adenosine triphosphate (ATP) production, and lactate generation. Further analysis revealed that QE inhibited the production of chemokine (C-X-C motif) ligand 1 (CXCL1) and suppressed neutrophil recruitment. Overall, QE showed promising therapeutic potential for liver fibrosis by targeting LSEC glycolysis and reducing neutrophil infiltration.
Collapse
Affiliation(s)
- Xiaoying Chen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yifan Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jie Wan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoyun Dou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuzhao Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Meng Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fang Ye
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Ying-Hao P, Yu-Shan Y, Song-Yi C, Hua J, Peng Y, Xiao-Hu C. Time of day-dependent alterations of ferroptosis in LPS-induced myocardial injury via Bmal-1/AKT/ Nrf2 in rat and H9c2 cell. Heliyon 2024; 10:e37088. [PMID: 39296207 PMCID: PMC11407985 DOI: 10.1016/j.heliyon.2024.e37088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background One of the most prevalent causes of death in sepsis is sepsis-induced cardiomyopathy (SICM). Circadian disruption is involved in the progress of sepsis. However, the molecular mechanism remains unclear. Methods Here, we built LPS-induced SICM in-vivo and in-vitro models. LPS was administrated at the particular Zeitgeber times (ZT), ZT4-ZT10-ZT16-ZT22 and ZT10-ZT22 in vivo and vitro experiments, respectively. Results In vivo experiment, injection of LPS at ZT10 induced higher infiltration of inflammatory cells and content of intracellular Fe2+, and lower level of Glutathione peroxidase 4 (GPX4) and cardiac function than other ZTs (P < 0.05), which indicated that myocardial ferroptosis in septic rat presented a time of day-dependent manner. Bmal-1 protein and mRNA levels of injection of LPS at ZT10 were lower than those at other three ZTs (P < 0.05). The ratios of pAKT/AKT at ZT4 and ZT10 LPS injection were lower than those at ZT16 and ZT22 (P < 0.05). Nrf2 protein levels at ZT10 LPS injection were lower than those at other three ZTs (P < 0.05). These results indicated that the circadian of Bmal-1 and its downstream AKT/Nrf2 pathway in rat heart were inhibited under SICM condition. Consistent with in-vivo experiment, we found LPS could significantly reduce the expressions of Bmal-1 protein and mRNA in H9c2 cell. Up-regulation of Bmal-1 could reduce the cell death, oxidative stress, ferroptosis and activation of AKT/Nrf2 pathway at both ZT10 and ZT22 LPS administration. Conversely, its down-regulation presented opposite effects. AKT siRNA could weaken the effect of Bmal-1 pcDNA. Conclusion Ferroptosis presented the time of day-dependent manners via Bmal-1/AKT/Nrf2 in vivo and vitro models of SICM.
Collapse
Affiliation(s)
- Pei Ying-Hao
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| | - Yang Yu-Shan
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
- Department of Cardiology, the People's Hospital of Qingyang City, Gansu Province, China
| | - Cheng Song-Yi
- Department of Cardiology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing university of Chinese medicine, Jiangsu Province, Nanjing, China
| | - Jiang Hua
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| | - Yu Peng
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| | - Chen Xiao-Hu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| |
Collapse
|
4
|
Ma J, Huang R, Zhang H, Liu D, Dong X, Xiong Y, Xiong X, Lan D, Fu W, He H, Li J, Yin S. The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli Cells. Int J Mol Sci 2024; 25:8764. [PMID: 39201451 PMCID: PMC11355056 DOI: 10.3390/ijms25168764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Fumonisin B1 (FB1), a mycotoxin produced by Fusarium species, is prevalent in crops and animal feed, posing significant health risks to livestock and humans. FB1 induces oxidative stress in Sertoli cells, destroys testicular structure, and affects spermatogenesis. However, methods to mitigate the reproductive toxicity of FB1 in testes remain unknown. Quercetin, a natural flavonoid antioxidant, may offer protective benefits. This study investigated the protective effects and mechanisms of quercetin against FB1-induced reproductive toxicity in TM4 cells (a Sertoli cell line). The results indicated that 40 μM quercetin improved cell viability, reduced apoptosis, and preserved cell functions. Quercetin also decreased reactive oxygen species (ROS) levels in TM4 cells exposed to FB1, enhanced the expression of antioxidant genes, and improved mitochondrial membrane potential. Compared with FB1 alone, the combination of quercetin and FB1 increased ATP levels, as well as pyruvate and lactic acid, the key glycolysis products. Furthermore, this combination elevated the mRNA and protein expression of glycolysis-related genes, including glucose-6-phosphate isomerase 1 (Gpi1), hexokinase 2 (Hk2), aldolase (Aldoa), pyruvate kinase, muscle (Pkm), lactate dehydrogenase A (Ldha) and phosphofructokinase, liver, B-type (Pfkl). Quercetin also boosted the activity of PKM and LDHA, two crucial glycolytic enzymes. In summary, quercetin mitigates FB1-induced toxicity in TM4 cells by reducing ROS levels and enhancing glycolysis. This study offers new insights into preventing and treating FB1-induced toxic damage to the male reproductive system and highlights the potential application of quercetin.
Collapse
Affiliation(s)
- Jun Ma
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Ruixue Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Huai Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dongju Liu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xiaodong Dong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Honghong He
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
5
|
Lu H, Guo J, Li Y, Zhang X, Liu W. Network analysis to explore the anti-senescence mechanism of Jinchan Yishen Tongluo Formula (JCYSTLF) in diabetic kidneys. Heliyon 2024; 10:e29364. [PMID: 38720731 PMCID: PMC11076649 DOI: 10.1016/j.heliyon.2024.e29364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Background The Jinchan Yishen Tongluo Formula (JCYSTLF) has the effect of delaying senescence in diabetic kidneys. However, the mechanism is not clear. Purpose Combination methods to investigate the anti-senescence mechanism of JCYSTLF in diabetic kidneys. Methods The main compounds of JCYSTLF were characterized by LC-MS/MS, and the anti-senescence targets of JCYSTLF were screened via network analysis. Then, we performed in vivo and in vitro experiments to validate the results. Results The target profiles of compounds were obtained by LC-MS/MS to characterize the primary function of JCYSTLF. Senescence was identified as a key biological functional module of JCYSTLF in the treatment of DN via constructing compounds-target-biological network analysis. Further analysis of senescence-related targets recognized the HIF-1α/autophagy pathway as the core anti-senescence mechanism of JCYSTLF in diabetic kidneys. Animal experiments showed, in comparison with valsartan, JCYSTLF showed an improvement in urinary albumin and renal pathological damage. JCYSTLF enhanced the ability of diabetic kidneys to clear senescence-related proteins via regulating autophagy confirmed by autophagy inhibitor CQ. However, HIF-1α inhibitor 2-ME weakened the role of JCYSLTF in regulating autophagy in diabetic kidneys. Meanwhile, over-expressed HIF-1α in HK-2 cells decreased the levels of SA-β-gal, p21 and p53 induced by AGEs. Upregulated HIF-1α could reverse the blocking of autophagy induced by AGEs in HK-2 cells evaluated by ptfLC3. Conclusion We provided in vitro and in vivo evidence for the anti-senescence role of JCYSTLF in regulating the HIF-1α/autophagy pathway.
Collapse
Affiliation(s)
- Hongmei Lu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Jing Guo
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
- Clinical Basic Research Institute of the China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yachun Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Xueqin Zhang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Weijing Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
- Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| |
Collapse
|
6
|
Xiang Y, Xu Z, Qian R, Wu D, Lin L, Shen J, Zhu P, Chen F, Liu C. Scutellarin Protects against Myocardial Ischemia-reperfusion Injury by Enhancing Aerobic Glycolysis through miR-34c-5p/ALDOA Axis. Int J Appl Basic Med Res 2024; 14:85-93. [PMID: 38912363 PMCID: PMC11189264 DOI: 10.4103/ijabmr.ijabmr_415_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Aerobic glycolysis has recently demonstrated promising potential in mitigating the effects of ischemia-reperfusion (IR) injury. Scutellarin (Scu) possesses various cardioprotective properties that warrant investigation. To mimic IR injury in vitro, this study employed hypoxia/reoxygenation (H/R) injury. Methods and Results First, we conducted an assessment of the protective properties of Scu against HR in H9c2 cells, encompassing inflammation damage, apoptosis injury, and oxidative stress. Then, we verified the effects of Scu on the Warburg effect in H9c2 cells during HR injury. The findings indicated that Scu augmented aerobic glycolysis by upregulating p-PKM2/PKM2 levels. Following, we built a panel of six long noncoding RNAs and seventeen microRNAs that were reported to mediate the Warburg effect. Based on the results, miR-34c-5p was selected for further experiments. Then, we observed Scu could mitigate the HR-induced elevation of miR-34c-5p. Upregulation of miR-34c-5p could weaken the beneficial impacts of Scu in cellular viability, inflammatory damage, oxidative stress, and the facilitation of the Warburg effect. Subsequently, our investigation revealed a decrease in both ALDOA mRNA and protein levels following HR injury, which could be restored by Scu administration. Downregulation of ALDOA or Mimic of miR-34c-5p could reduce these effects induced by Scu. Conclusions Scu provides cardioprotective effects against IR injury by upregulating the Warburg effect via miR-34c-5p/ALDOA.
Collapse
Affiliation(s)
- Yijia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Zhongjiao Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Renyi Qian
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Daying Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Li Lin
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Jiayi Shen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Pengchong Zhu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Fenghui Chen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Chong Liu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| |
Collapse
|
7
|
Deng X, Chen X, Luo Y, Que J, Chen L. Intratumor microbiome derived glycolysis-lactate signatures depicts immune heterogeneity in lung adenocarcinoma by integration of microbiomic, transcriptomic, proteomic and single-cell data. Front Microbiol 2023; 14:1202454. [PMID: 37664112 PMCID: PMC10469687 DOI: 10.3389/fmicb.2023.1202454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Microbiome plays roles in lung adenocarcinoma (LUAD) development and anti-tumor treatment efficacy. Aberrant glycolysis in tumor might promote lactate production that alter tumor microenvironment, affecting microbiome, cancer cells and immune cells. We aimed to construct intratumor microbiome score to predict prognosis of LUAD patients and thoroughly investigate glycolysis and lactate signature's association with LUAD immune cell infiltration. Methods The Cancer Genome Atlas-LUAD (TCGA-LUAD) microbiome data was downloaded from cBioPortal and analyzed to examine its association with overall survival to create a prognostic scoring model. Gene Set Enrichment Analysis (GSEA) was used to find each group's major mechanisms involved. Our study then investigated the glycolysis and lactate pattern in LUAD patients based on 19 genes, which were correlated with the tumor microenvironment (TME) phenotypes and immunotherapy outcomes. We developed a glycolysis-lactate risk score and signature to accurately predict TME phenotypes, prognosis, and response to immunotherapy. Results Using the univariate Cox regression analysis, the abundance of 38 genera were identified with prognostic values and a lung-resident microbial score (LMS) was then developed from the TCGA-LUAD-microbiome dataset. Glycolysis hallmark pathway was significantly enriched in high-LMS group and three distinct glycolysis-lactate patterns were generated. Patients in Cluster1 exhibited unfavorable outcomes and might be insensitive to immunotherapy. Glycolysis-lactate score was constructed for predicting prognosis with high accuracy and validated in external cohorts. Gene signature was developed and this signature was elevated in epithelial cells especially in tumor mass on single-cell level. Finally, we found that the glycolysis-lactate signature levels were consistent with the malignancy of histological subtypes. Discussion Our study demonstrated that an 18-microbe prognostic score and a 19-gene glycolysis-lactate signature for predicting prognosis of LUAD patients. Our LMS, glycolysis-lactate score and glycolysis-lactate signature have potential roles in precision therapy of LUAD patients.
Collapse
Affiliation(s)
| | | | | | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Lin H, Ji F, Lin KQ, Zhu YT, Yang W, Zhang LH, Zhao JG, Pei YH. LPS-aggravated Ferroptosis via Disrupting Circadian Rhythm by Bmal1/AKT/p53 in Sepsis-Induced Myocardial Injury. Inflammation 2023:10.1007/s10753-023-01804-7. [PMID: 37046145 DOI: 10.1007/s10753-023-01804-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023]
Abstract
Circadian disruption is involved in the progress of sepsis-induced cardiomyopathy (SICM), one of the leading causes of death in sepsis. The molecular mechanism remains ambiguous. In this study, LPS was used to build SICM model in H9c2 cell. The results suggested that LPS induced cytotoxicity via increasing ferroptosis over the time of course. After screening the expressions of six circadian genes, the circadian swing of Bmal1 was dramatically restrained by LPS in H9c2 cell of SIMC vitro model. PcDNA and siRNA were used to upregulate and downregulate Bmal1 and confirmed that Bmal1 inhibited LPS-triggered ferroptosis in H9c2 cells. Then, the results suggested that AKT/p53 pathway was restrained by LPS in H9c2 cell. Rescue test indicated that Bmal1 inhibited LPS-triggered ferroptosis via AKT/p53 pathway in H9c2 cells. In summary, our findings demonstrated that LPS induced cytotoxicity via increasing ferroptosis over the time of course in H9c2 cells and Bmal1 inhibited this toxicity of LPS via AKT/p53 pathway. Although further studies are needed, our findings may contribute to a new insight to mechanism of SICM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Fang Ji
- Department of Intensive Care Unit, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Kong-Qin Lin
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Yu-Tao Zhu
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Wen Yang
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Long-Hai Zhang
- Department of Intensive Care Unit, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Jian-Gao Zhao
- Department of Neurology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China.
| | - Ying-Hao Pei
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
9
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
11
|
Chen L, Yu D, Ling S, Xu JW. Mechanism of tonifying-kidney Chinese herbal medicine in the treatment of chronic heart failure. Front Cardiovasc Med 2022; 9:988360. [PMID: 36172573 PMCID: PMC9510640 DOI: 10.3389/fcvm.2022.988360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
According to traditional Chinese medicine (TCM), chronic heart failure has the basic pathological characteristics of “heart-kidney yang deficiency.” Chronic heart failure with heart- and kidney-Yang deficiency has good overlap with New York Heart Association (NYHA) classes III and IV. Traditional Chinese medicine classical prescriptions for the treatment of chronic heart failure often take “warming and tonifying kidney-Yang” as the core, supplemented by herbal compositions with functions of “promoting blood circulation and dispersing blood stasis.” Nowadays, there are still many classical and folk prescriptions for chronic heart failure treatment, such as Zhenwu decoction, Bushen Huoxue decoction, Shenfu decoction, Sini decoction, as well as Qili Qiangxin capsule. This review focuses on classical formulations and their active constituents that play a key role in preventing chronic heart failure by suppressing inflammation and modulating immune and neurohumoral factors. In addition, given that mitochondrial metabolic reprogramming has intimate relation with inflammation, cardiac hypertrophy, and fibrosis, the regulatory role of classical prescriptions and their active components in metabolic reprogramming, including glycolysis and lipid β-oxidation, is also presented. Although the exact mechanism is unknown, the classical TCM prescriptions still have good clinical effects in treating chronic heart failure. This review will provide a modern pharmacological explanation for its mechanism and offer evidence for clinical medication by combining TCM syndrome differentiation with chronic heart failure clinical stages.
Collapse
|
12
|
Wang M, Pang Y, Guo Y, Tian L, Liu Y, Shen C, Liu M, Meng Y, Cai Z, Wang Y, Zhao W. Metabolic reprogramming: A novel therapeutic target in diabetic kidney disease. Front Pharmacol 2022; 13:970601. [PMID: 36120335 PMCID: PMC9479190 DOI: 10.3389/fphar.2022.970601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common microvascular complications of diabetes mellitus. However, the pathological mechanisms contributing to DKD are multifactorial and poorly understood. Diabetes is characterized by metabolic disorders that can bring about a series of changes in energy metabolism. As the most energy-consuming organs secondary only to the heart, the kidneys must maintain energy homeostasis. Aberrations in energy metabolism can lead to cellular dysfunction or even death. Metabolic reprogramming, a shift from mitochondrial oxidative phosphorylation to glycolysis and its side branches, is thought to play a critical role in the development and progression of DKD. This review focuses on the current knowledge about metabolic reprogramming and the role it plays in DKD development. The underlying etiologies, pathological damages in the involved cells, and potential molecular regulators of metabolic alterations are also discussed. Understanding the role of metabolic reprogramming in DKD may provide novel therapeutic approaches to delay its progression to end-stage renal disease.
Collapse
|
13
|
Chen K, Deng Y, Shang S, Li P, Liu L, Chen X. Network Pharmacology-Based Investigation of the Molecular Mechanisms of the Chinese Herbal Formula Shenyi in the Treatment of Diabetic Nephropathy. Front Med (Lausanne) 2022; 9:898624. [PMID: 35755045 PMCID: PMC9226379 DOI: 10.3389/fmed.2022.898624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background The Chinese herbal formula Shenyi (SY) is a prescription that was developed by the Department of Nephrology, Chinese People's Liberation Army General Hospital. This preparation is mainly used to treat chronic kidney disease (CKD) caused by Diabetic nephropathy (DN) and is effective. However, the active ingredients of SY, DN treatment-related molecular targets and the effector mechanisms are still unclear. Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and the Traditional Chinese Medicine and Chemical Component Database of Shanghai Institute of Organic Chemistry were used to screen the active ingredients in SY, the TCMSP database and Swiss Target Prediction database were used to collect the targets of the active ingredients of SY, and the Gene Cards and Online Mendelian Inheritance in Man (OMIM) databases were used to screen for DN pathogenesis targets. The intersections of the component targets and disease targets were mapped to obtain the therapeutic targets. The METASCAPE database was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the therapeutic targets. Cytoscape 3.7.2 was used to analyze topological parameters and construct a network of SY for the treatment of DN. Results Sixty-two active ingredients and 497 active ingredient effector targets in SY, 3260 DN-related targets, and 271 SY treatments for DN targets were identified. Among these targets, 17 were core targets, including AKT1, tumor necrosis factor (TNF), interleukin-6 (IL6), and TP53. The GO and KEGG enrichment analyses show that SY's therapeutic effects for DN occur mainly through pathways such as advanced glycation end product (AGE)-RAGE, PI3K-Akt, and IL-17. Conclusion Multiple active ingredients in SY exhibit treatment effects on DN by affecting metabolism, inhibiting inflammation, and affecting cell structure growth.
Collapse
Affiliation(s)
- Keng Chen
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China.,First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shunlai Shang
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ping Li
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Linchang Liu
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.,Department of Nephrology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Xiangmei Chen
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China.,First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
14
|
Guerreiro Í, Ferreira-Pêgo C, Carregosa D, Santos CN, Menezes R, Fernandes AS, Costa JG. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022; 11:foods11071060. [PMID: 35407148 PMCID: PMC8997953 DOI: 10.3390/foods11071060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.
Collapse
Affiliation(s)
- Íris Guerreiro
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Cíntia Ferreira-Pêgo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Diogo Carregosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Regina Menezes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana S. Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - João G. Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- Correspondence:
| |
Collapse
|
15
|
Ma C, Zhang W, Xie R, Wan G, Yang G, Zhang X, Fu H, Zhu L, Lv Y, Zhang J, Li Y, Ji Y, Gao D, Cui X, Wang Z, Chen Y, Yuan S, Yuan M. Effect of Hemoglobin A1c Trajectories on Future Outcomes in a 10-Year Cohort With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:846823. [PMID: 35450420 PMCID: PMC9016129 DOI: 10.3389/fendo.2022.846823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Hemoglobin A1c (HbA1c) variability may be a predictor of diabetic complications, but the predictive values of HbA1c trajectories remain unclear. We aimed to classify long-term HbA1c trajectories and to explore their effects on future clinical outcomes in a 10-year cohort with type 2 diabetes mellitus (T2DM). METHODS A total of 2,161 participants with T2DM from the Beijing Community Diabetes Study were included. The 10-year follow-up was divided into two stages for the present data analysis. Stage I (from 2008 to 2014) was used to identify the HbA1c trajectories and to calculate the adjusted SD of HbA1c (HbA1c-adjSD), or the coefficient of variation of HbA1c (HbA1c-CV). Stage II (from 2014 to 2018) was used to collect the records of the new occurrence of diabetes-related clinical outcomes. Latent growth mixture models were used to identify HbA1c trajectories. Cox proportional hazards models were used to explore the relationship between HbA1c trajectories, HbA1c-adjSD, or HbA1c-CV and the future outcomes. RESULTS Three HbA1c trajectories were identified, including low stable (88.34%), gradual decreasing (5.83%), and pre-stable and post-increase (5.83%). Either the risk of death or the chronic complications were significantly higher in the latter two groups compared to the low stable group after adjustment for average HbA1c and other traditional risk factors, the adjusted hazard ratios (HRs) for renal events, composite endpoint, and all-cause death for the pre-stable and post-increase group were 2.83 [95%CI: 1.25-6.41, p = 0.013], 1.85 (95%CI: 1.10-3.10, p = 0.020), and 3.01 (95%CI: 1.13-8.07, p = 0.028), respectively, and the adjusted HR for renal events for the gradual decreasing group was 2.37 (95%CI: 1.08-5.21, p = 0.032). In addition, both univariate and multivariate Cox HR models indicated that participants in the fourth and third quartiles of HbA1c-CV or HbA1c-adjSD were at higher risk of renal events compared to participants in the first quartile. CONCLUSIONS HbA1c trajectories, HbA1c-CV, and HbA1c-adjSD could all predict diabetes-related clinical outcomes. HbA1c trajectories could reflect long-term blood glucose fluctuation more intuitively, and non-stable HbA1c trajectories may predict increased risk of renal events, all-cause death, and composite endpoint events, independent of average HbA1c.
Collapse
Affiliation(s)
- Chifa Ma
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weinan Zhang
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rongrong Xie
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gang Wan
- Medical Records and Statistics Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guangran Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuelian Zhang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hanjing Fu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liangxiang Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yujie Lv
- Department of General Practice, Cuigezhuang Community Health Service Center, Beijing, China
| | - Jiandong Zhang
- Department of General Practice, Jinsong Community Health Service Center, Beijing, China
| | - Yuling Li
- Department of General Practice, Xinjiekou Community Health Service Center, Beijing, China
| | - Yu Ji
- Department of Endocrinology, Beijing Aerospace General Hospital, Beijing, China
| | - Dayong Gao
- Department of General Practice, Aerospace Central Hospital, Beijing, China
| | - Xueli Cui
- Department of General Practice, Sanlitun Community Health Service Center, Beijing, China
| | - Ziming Wang
- Department of General Practice, Jiangtai Community Health Service Center, Beijing, China
| | - Yingjun Chen
- Department of General Practice, Majiapu Community Health Service Center, Beijing, China
| | - Shenyuan Yuan
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Mingxia Yuan
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Mingxia Yuan,
| |
Collapse
|
16
|
Chen X, Tian F, Sun Z, Zeng G, Tang P. Elevation of Circulating miR-210 Participates in the Occurrence and Development of Type 2 Diabetes Mellitus and Its Complications. J Diabetes Res 2022; 2022:9611509. [PMID: 36465705 PMCID: PMC9711992 DOI: 10.1155/2022/9611509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Circulating miRNAs are acclaimed biomarkers to predict the occurrence and progression of type 2 diabetes mellitus (T2DM). This study is aimed at analyzing the correlation of circulating miR-210 level and obesity-associated T2DM and then investigating the underlying mechanism of circulating miR-210 in T2DM. METHODS Totally, 137 serum samples from patients with T2DM were collected; meanwhile, the demographic, general, and clinical hematological characteristics, disease history, and dietary patterns were recorded. The miR-210 level in exosomes from serum was detected by qRT-PCR. Then, the correlations of BMI or miR-210 level with patients' clinical characteristics were analyzed. Furthermore, the miR-210 level was detected in T2DM related various cells under high glucose condition. Meanwhile, the expression of carbohydrate responsive element binding protein (ChREBP) and hypoxia-inducible factor 1α (HIF-1α) was measured by western blotting. RESULTS The miR-210 level in exosomes from serum was obviously elevated in the BMI > 24 group compared with the BMI ≤ 24 group. Higher BMI was correlated with abnormal lipid metabolism and impaired liver function as well as higher miR-210 level. Notably, higher miR-210 level was also correlated with abnormal lipid metabolism, disease history, and dietary patterns. In addition, compared with normal cells, high glucose increased the miR-210 level in exosomes from cell culture supernatants as well as cells in HUVEC, VSMC, RAW 264.7, 3 T3-L1, SMC, and Beta-TC-6 cells, while it reduced the expression of ChREBP and HIF-1α. CONCLUSIONS Circulating miR-210 level was closely correlated with obesity-associated T2DM. Furthermore, higher miR-210 level might be implicated in the occurrence and development of T2DM and its complications.
Collapse
Affiliation(s)
- Xi Chen
- Department of General Practice, Shenzhen Luohu People's Hospital, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Feng Tian
- Department of Health Care, The Shunde Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhilian Sun
- Department of Endocrinology and Metabolism, Shenzhen Luohu People's Hospital, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Guoqing Zeng
- Department of General Practice, Shenzhen Luohu People's Hospital, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Ping Tang
- Department of General Practice, Shenzhen Luohu People's Hospital, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Wen L, Li Y, Li S, Hu X, Wei Q, Dong Z. Glucose Metabolism in Acute Kidney Injury and Kidney Repair. Front Med (Lausanne) 2021; 8:744122. [PMID: 34912819 PMCID: PMC8666949 DOI: 10.3389/fmed.2021.744122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The kidneys play an indispensable role in glucose homeostasis via glucose reabsorption, production, and utilization. Conversely, aberrant glucose metabolism is involved in the onset, progression, and prognosis of kidney diseases, including acute kidney injury (AKI). In this review, we describe the regulation of glucose homeostasis and related molecular factors in kidneys under normal physiological conditions. Furthermore, we summarize recent investigations about the relationship between glucose metabolism and different types of AKI. We also analyze the involvement of glucose metabolism in kidney repair after injury, including renal fibrosis. Further research on glucose metabolism in kidney injury and repair may lead to the identification of novel therapeutic targets for the prevention and treatment of kidney diseases.
Collapse
Affiliation(s)
- Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Ying Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| |
Collapse
|
18
|
Jin M, Ren W, Zhang W, Liu L, Yin Z, Li D. Exploring the Underlying Mechanism of Shenyankangfu Tablet in the Treatment of Glomerulonephritis Through Network Pharmacology, Machine Learning, Molecular Docking, and Experimental Validation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4585-4601. [PMID: 34785888 PMCID: PMC8590514 DOI: 10.2147/dddt.s333209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Purpose This study aimed to explore the underlying mechanisms of Shenyankangfu tablet (SYKFT) in the treatment of glomerulonephritis (GN) based on network pharmacology, machine learning, molecular docking, and experimental validation. Methods The active ingredients and potential targets of SYKFT were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the targets of GN were obtained through GeneCards, etc. Perl and Cytoscape were used to construct an herb-active ingredient–target network. Then, the clusterProfiler package of R was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We also used the STRING platform and Cytoscape to construct a protein–protein interaction (PPI) network, as well as the SwissTargetPrediction server to predict the target protein of the core active ingredient based on machine-learning model. Molecular-docking analysis was further performed using AutoDock Vina and Pymol. Finally, we verified the effect of SYKFT on GN in vivo. Results A total of 154 active ingredients and 255 targets in SYKFT were screened, and 135 targets were identified to be related to GN. GO enrichment analysis indicated that biological processes were primarily associated with oxidative stress and cell proliferation. KEGG pathway analysis showed that these targets were involved mostly in infection-related and GN-related pathways. PPI network analysis identified 13 core targets of SYKFT. Results of machine-learning model suggested that STAT3 and AKT1 may be the key target. Results of molecular docking suggested that the main active components of SYKFT can be combined with various target proteins. In vivo experiments confirmed that SYKFT may alleviate renal pathological injury by regulating core genes, thereby reducing urinary protein. Conclusion This study demonstrated for the first time the multicomponent, multitarget, and multipathway characteristics of SYKFT for GN treatment.
Collapse
Affiliation(s)
- Meiling Jin
- Department of Nephrology, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.,Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China
| | - Wenwen Ren
- Department of Nephrology, Beijing Ditan Hospital,Capital Medical University, Beijing, 100015, People's Republic of China
| | - Weiguang Zhang
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China
| | - Linchang Liu
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China.,Department of Nephrology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100039, People's Republic of China
| | - Zhiwei Yin
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China.,College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Diangeng Li
- Department of Academic Research, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| |
Collapse
|
19
|
Curcumin Antagonizes Glucose Fluctuation-Induced Renal Injury by Inhibiting Aerobic Glycolysis via the miR-489/LDHA Pathway. Mediators Inflamm 2021; 2021:6104529. [PMID: 34456629 PMCID: PMC8387199 DOI: 10.1155/2021/6104529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
It has been considered that glucose fluctuation (GF) plays a role in renal injury and is related to diabetic nephropathy (DN) development. But the mechanism is still unclear. Aerobic glycolysis has become a topical issue in DN in recent years. There is an internal connection between GF, aerobic glycolysis, and DN. Curcumin (Cur) is a principal curcuminoid of turmeric and possesses specific protective properties in kidney functions. Cur also participates in the regulation of aerobic glycolysis switch. In this study, we first measured the levels of aerobic glycolysis and evaluated Cur's inhibitory ability in a cell model of HEK-293 under the condition of oscillating high glucose. The results indicated that GF exacerbated inflammation injury, oxidative stress, and apoptosis in HEK-293 cell, while Cur alleviated this cytotoxicity induced by GF. We found that GF increased aerobic glycolysis in HEK-293 cells and Cur presented a dose-dependent weakening effect to this exacerbation. Next, we built a panel of 17 miRNAs and 8 lncRNAs that were previously reported to mediate the Warburg effect. Our RT-qPCR results indicated that GF reduced the miR-489 content in the HEK-293 cell model and Cur could prevent this downregulation. Then, we planned to explore the character of miR-489 in Cur-triggered attenuation of the Warburg effect under GF condition. Our findings presented that Cur prevented GF-triggered aerobic glycolysis by upregulating miR-489 in HEK-293 cells. Next, we choose the miR-489/LDHA axis for further investigation. We confirmed that Cur prevented GF-triggered aerobic glycolysis via the miR-489/LDHA axis in HEK-293 cells. In conclusion, this study presented that Cur prevented GF-triggered renal injury by restraining aerobic glycolysis via the miR-489/LDHA axis in the HEK-293 cell model.
Collapse
|
20
|
Klimontov VV, Saik OV, Korbut AI. Glucose Variability: How Does It Work? Int J Mol Sci 2021; 22:7783. [PMID: 34360550 PMCID: PMC8346105 DOI: 10.3390/ijms22157783] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence points to the role of glucose variability (GV) in the development of the microvascular and macrovascular complications of diabetes. In this review, we summarize data on GV-induced biochemical, cellular and molecular events involved in the pathogenesis of diabetic complications. Current data indicate that the deteriorating effect of GV on target organs can be realized through oxidative stress, glycation, chronic low-grade inflammation, endothelial dysfunction, platelet activation, impaired angiogenesis and renal fibrosis. The effects of GV on oxidative stress, inflammation, endothelial dysfunction and hypercoagulability could be aggravated by hypoglycemia, associated with high GV. Oscillating hyperglycemia contributes to beta cell dysfunction, which leads to a further increase in GV and completes the vicious circle. In cells, the GV-induced cytotoxic effect includes mitochondrial dysfunction, endoplasmic reticulum stress and disturbances in autophagic flux, which are accompanied by reduced viability, activation of apoptosis and abnormalities in cell proliferation. These effects are realized through the up- and down-regulation of a large number of genes and the activity of signaling pathways such as PI3K/Akt, NF-κB, MAPK (ERK), JNK and TGF-β/Smad. Epigenetic modifications mediate the postponed effects of glucose fluctuations. The multiple deteriorative effects of GV provide further support for considering it as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
| | - Olga V. Saik
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
- Laboratory of Computer Proteomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia
| | - Anton I. Korbut
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
| |
Collapse
|