1
|
Persaud M, Lewis A, Kisiala A, Smith E, Azimychetabi Z, Sultana T, Narine SS, Emery RJN. Untargeted Metabolomics and Targeted Phytohormone Profiling of Sweet Aloes ( Euphorbia neriifolia) from Guyana: An Assessment of Asthma Therapy Potential in Leaf Extracts and Latex. Metabolites 2025; 15:177. [PMID: 40137143 PMCID: PMC11943701 DOI: 10.3390/metabo15030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives:Euphorbia neriifolia is a succulent plant from the therapeutically rich family of Euphorbia comprising 2000 species globally. E. neriifolia is used in Indigenous Guyanese asthma therapy. Methods: To investigate E. neriifolia's therapeutic potential, traditionally heated leaf, simple leaf, and latex extracts were evaluated for phytohormones and therapeutic compounds. Full scan, data-dependent acquisition, and parallel reaction monitoring modes via liquid chromatography Orbitrap mass spectrometry were used for screening. Results: Pathway analysis of putative features from all extracts revealed a bias towards the phenylpropanoid, terpenoid, and flavonoid biosynthetic pathways. A total of 850 compounds were annotated using various bioinformatics tools, ranging from confidence levels 1 to 3. Lipids and lipid-like molecules (34.35%), benzenoids (10.24%), organic acids and derivatives (12%), organoheterocyclic compounds (12%), and phenylpropanoids and polyketides (10.35%) dominated the contribution of compounds among the 13 superclasses. Semi-targeted screening revealed 14 out of 16 literature-relevant therapeutic metabolites detected, with greater upregulation in traditional heated extracts. Targeted screening of 39 phytohormones resulted in 25 being detected and quantified. Simple leaf extract displayed 4.4 and 45 times greater phytohormone levels than traditional heated leaf and latex extracts, respectively. Simple leaf extracts had the greatest nucleotide and riboside cytokinin and acidic phytohormone levels. In contrast, traditional heated extracts exhibited the highest free base and glucoside cytokinin levels and uniquely contained methylthiolated and aromatic cytokinins while lacking acidic phytohormones. Latex samples had trace gibberellic acid levels, the lowest free base, riboside, and nucleotide levels, with absences of aromatic, glucoside, or methylthiolated cytokinin forms. Conclusions: In addition to metabolites with possible therapeutic value for asthma treatment, we present the first look at cytokinin phytohormones in the species and Euphorbia genus alongside metabolite screening to present a comprehensive assessment of heated leaf extract used in Indigenous Guyanese asthma therapy.
Collapse
Affiliation(s)
- Malaika Persaud
- Sustainability Studies Graduate Program, Faculty of Arts and Science, Trent University, Peterborough, ON K9J 0G2, Canada;
| | - Ainsely Lewis
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada; (A.K.); (R.J.N.E.)
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada; (A.K.); (R.J.N.E.)
| | - Ewart Smith
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 0G2, Canada; (E.S.); (Z.A.)
| | - Zeynab Azimychetabi
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 0G2, Canada; (E.S.); (Z.A.)
| | - Tamanna Sultana
- Department of Chemistry, Trent University, Peterborough, ON K9J 0G2, Canada;
| | - Suresh S. Narine
- Trent Centre for Biomaterials Research, Trent University, Peterborough, ON K9J 0G2, Canada;
- Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, ON K9J 0G2, Canada
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada; (A.K.); (R.J.N.E.)
| |
Collapse
|
2
|
Leber A, Hontecillas R, Tubau-Juni N, Fitch SN, Bassaganya-Riera J. Immunometabolic Mechanisms of LANCL2 in CD4+ T Cells and Phagocytes Provide Protection from Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1429-1440. [PMID: 39365106 DOI: 10.4049/jimmunol.2400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Lanthionine synthetase C-like 2 (LANCL2) is an immunoregulatory therapeutic target for autoimmune diseases. NIM-1324 is an investigational new drug aimed at addressing the unmet clinical needs of patients with systemic lupus erythematosus (SLE) by targeting the LANCL2 immunometabolic pathway. In R848 and bm12 adoptive transfer models of systemic inflammation that share pathologies with SLE, Lancl2-/- mice experienced greater mortality, increased spleen weight, and reduced CD25hi FOXP3+ CD4+ regulatory T cells compared with the wild type. Conversely, treatment with NIM-1324 in the wild type increased CD25hi FOXP3+ regulatory T cells while reducing inflammatory IL-17+ and IL-21+ CD4+ T cell subsets in the spleen. In traditional mouse models of SLE (NZB/W F1 and MRL/lpr), oral treatment with NIM-1324 protected against weight loss and proteinuria, decreased anti-dsDNA titers, and provided similar changes to the CD4+ T cell compartment in the spleen. The pharmacological activation of LANCL2 by NIM-1324 rescued hypocomplementemia, reduced kidney histopathological scores, and decreased blood IFN response genes and inflammatory cytokines. The loss of LANCL2 in phagocytes impairs phagosome processing, leading to increased uptake of material and inflammatory cytokine production, yet decreased markers of endosomal maturation, phagosome turnover, and lysozyme activity. Treatment with NIM-1324 increases metabolic and lysozyme activity in the phagosome, providing support for increased markers of early phagosome function. This efficacy translated to human PBMCs from patients with SLE, because ex vivo treatment with NIM-1324 resulted in reduced levels of IFN-α, IL-6, and IL-8. Consequently, the activation of LANCL2 effectively modulates CD4+ T cell differentiation and phagocyte activation, supporting immune tolerance in SLE.
Collapse
|
3
|
Liu F, Duan W, Guan T, Zhou Q, Yan W, Geng Y. Water extract of Pingchuan formula ameliorated murine asthma through modulating metabolites and gut microbiota. J Pharm Biomed Anal 2023; 236:115728. [PMID: 37793314 DOI: 10.1016/j.jpba.2023.115728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Pingchuan formula is a traditional Chinese herbal prescription for asthma, but its components and underlying mechanisms remain unclear. Here, we evaluated its anti-asthmatic actvity and regulatory effects on the gut microbiota in mice based on the traditional Chinese medicine Zang-Fu theory, which proposed the exterior-interior relationship between the lung and the large intestine. METHODS Mouse model withovalbumin (OVA)-induced asthma was used to assess the protective effect of the water extract of Pingchuan formula (PC). The chemical compounds of PC and mouse serum metabolites were identified by Ultraperformance liquid chromatography-Q Exactive HF-X spectrometry. Gut microbiota was evaluated by 16 S rRNA gene sequencing. The gut microbiota was depleted with a broad-spectrum antibiotic mixture (Abx) to explore whether it plays a role in the protective effects of PC. RESULTS PC mainly contains phenols, flavonoids, alkaloids, carboxylic acids, and their derivatives. PC attenuated OVA-induced asthma in mice by alleviating inflammatory infiltration, indicated by decreased levels of IL-18, IL-6, IL-4, and Eotaxin in lung tissues. PC treatment altered the serum metabolites and affected the pyrimidine pathway. In addition, our results showed that acacetin and abscisic acid were the key serum metabolites PC treatment changed the composition of gut microbiota by increasing the relative abundance of Clostridia_UCG_014 and Akkermansia while decreasing Blautia, Barnesiella, and Clostridium_Ⅲ at the genus level. Importantly, the Abx treatment partly abolished the anti-asthmatic effect of PC. CONCLUSION We demonstrated that PC could alleviate OVA-induced asthma in mice and protect against inflammatory infiltration in lungs via modulating the serum metabolites and gut microbiota, thereby providing a new reference for the therapeutic effect of PC.
Collapse
Affiliation(s)
- Fei Liu
- WuXi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China
| | - Wenhui Duan
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Tianyue Guan
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Qi Zhou
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Wei Yan
- Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Wacker M, Ball A, Beer HD, Schmitz I, Borucki K, Azizzadeh F, Scherner M, Awad G, Wippermann J, Veluswamy P. Immunophenotyping of Monocyte Migration Markers and Therapeutic Effects of Selenium on IL-6 and IL-1β Cytokine Axes of Blood Mononuclear Cells in Preoperative and Postoperative Coronary Artery Disease Patients. Int J Mol Sci 2023; 24:7198. [PMID: 37108367 PMCID: PMC10139122 DOI: 10.3390/ijms24087198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Multivessel coronary artery disease (CAD) is characterized by underlying chronic vascular inflammation and occlusion in the coronary arteries, where these patients undergo coronary artery bypass grafting (CABG). Since post-cardiotomy inflammation is a well known phenomenon after CABG, attenuation of this inflammation is required to reduce perioperative morbidity and mortality. In this study, we aimed to phenotype circulating frequencies and intensities of monocyte subsets and monocyte migration markers, respectively, and to investigate the plasma level of inflammatory cytokines and chemokines between preoperative and postoperative CAD patients and later, to intervene the inflammation with sodium selenite. We found a higher amplitude of inflammation, postoperatively, in terms of CCR1high monocytes and significantly increased pro-inflammatory cytokines, IL-6, IL-8, and IL-1RA. Further, in vitro intervention with selenium displayed mitigating effects on the IL-6/STAT-3 axis of mononuclear cells derived from postoperative CAD patients. In addition, in vitro selenium intervention significantly reduced IL-1β production as well as decreased cleaved caspase-1 (p20) activity by preoperative (when stimulated) as well as postoperative CAD mononuclear cells. Though TNF-α exhibited a positive correlation with blood troponin levels in postoperative CAD patients, there was no obvious effect of selenium on the TNF-α/NF-κB axis. In conclusion, anti-inflammatory selenium might be utilized to impede systemic inflammatory cytokine axes to circumvent aggravating atherosclerosis and further damage to the autologous bypass grafts during the post-surgical period.
Collapse
Affiliation(s)
- Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Anna Ball
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland;
| | - Ingo Schmitz
- Department of Molecular Immunology, Medical Faculty of Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Faranak Azizzadeh
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - George Awad
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| |
Collapse
|
5
|
Dasgupta S, Ghosh N, Bhattacharyya P, Roy Chowdhury S, Chaudhury K. Metabolomics of asthma, COPD, and asthma-COPD overlap: an overview. Crit Rev Clin Lab Sci 2023; 60:153-170. [PMID: 36420874 DOI: 10.1080/10408363.2022.2140329] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two common progressive lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are the leading causes of morbidity and mortality worldwide. Asthma-COPD overlap, referred to as ACO, is another complex pulmonary disease that manifests itself with features of both asthma and COPD. The disease has no clear diagnostic or therapeutic guidelines, thereby making both diagnosis and treatment challenging. Though a number of studies on ACO have been documented, gaps in knowledge regarding the pathophysiologic mechanism of this disorder exist. Addressing this issue is an urgent need for improved diagnostic and therapeutic management of the disease. Metabolomics, an increasingly popular technique, reveals the pathogenesis of complex diseases and holds promise in biomarker discovery. This comprehensive narrative review, comprising 99 original research articles in the last five years (2017-2022), summarizes the scientific advances in terms of metabolic alterations in patients with asthma, COPD, and ACO. The analytical tools, nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), commonly used to study the expression of the metabolome, are discussed. Challenges frequently encountered during metabolite identification and quality assessment are highlighted. Bridging the gap between phenotype and metabotype is envisioned in the future.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
6
|
Wang L, Zou H, Xiao X, Wu H, Zhu Y, Li J, Liu X, Shen Q. Abscisic acid inhibited reactive oxygen species-mediated endoplasmic reticulum stress by regulating the PPAR-γ signaling pathway in ARDS mice. Phytother Res 2021; 35:7027-7038. [PMID: 34791723 DOI: 10.1002/ptr.7326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening form of a respiratory disorder, and there are few effective therapies. Abscisic acid (ABA) has been proven to be effective in influenza and asthma. Herein, we explored the protective effect of ABA on the resolution of ARDS and the underlying mechanism. Mice were challenged with lipopolysaccharide (LPS) to establish an ARDS model. We found that ABA reduced pulmonary injury, with concomitant suppression of endoplasmic reticulum (ER) stress and reduction of reactive oxygen species (ROS) production. Furthermore, after the elimination of ROS by the specific inhibitor N-acetyl-L-cysteine (NAC), ABA did not further inhibit airway inflammation or ER stress in ARDS mice. In addition, ABA inhibited ROS production through nuclear factor erythroid 2-related factor 2 (Nrf2) activation in parallel with elevated levels of peroxisome proliferator activated receptor γ (PPAR-γ). Furthermore, the addition of a PPAR-γ antagonist abrogated the suppressive action of ABA on inflammation as well as on ER stress and oxidative stress, while NAC restored the protective effect of ABA in ARDS mice treated with a PPAR-γ antagonist. Collectively, ABA protects against LPS-induced lung injury through PPAR-γ signaling, and this effect may be associated with its inhibitory effect on ROS-mediated ER stress.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongyun Zou
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xueying Xiao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huimei Wu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Yan Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qiying Shen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Anesthesiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|