1
|
Yang Y, Dong L, Qi H, Zhang Y, Zhang Y, Sun J, Chai X, Lu X, Fan Z, Wu D, Zhang G, Lei H. Metabolic correlations between kidney and eye in a mouse model of oxygen-induced retinopathy and retinopathy of prematurity. BMJ Open Ophthalmol 2025; 10:e001955. [PMID: 40312111 DOI: 10.1136/bmjophth-2024-001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/23/2025] [Indexed: 05/03/2025] Open
Abstract
INTRODUCTION Retinopathy of prematurity (ROP) is one of the leading causes of babies' visual impairment and blindness. There is no effective prevention and treatment of ROP so far, and the shared genetic and developmental similarities among the brain, kidneys and retina may offer novel potential therapeutic approaches to ROP. OBJECTIVES The aim of this study is to explore a correlation of ROP patients and the renal, eye tissue of the mouse model of oxygen-induced retinopathy (OIR). METHODS AND ANALYSIS We used renal and vitreous untargeted/targeted metabolomics in OIR to conduct our study. Network association analysis and machine learning were performed with the above results and previous studies: retinal-targeted metabolomics of OIR and human blood-targeted metabolomics of ROP. RESULTS OIR results in retinal neovascularisation and renal injury. Nine canonical signalling pathways were enriched, which are involved in the initiation and progression of pathologic retinal neovascularisation. Arginine biosynthesis emerged as a common pathway across renal, vitreous, retinal and blood metabolomics, suggesting its potential as a predictive biomarker and therapeutic target for ROP and neonatal kidney injury. CONCLUSION The presence of renal injury-related indicators may assist in diagnosing retinal neovascular diseases such as ROP. Arginine biosynthesis is the best common pathway of kidney-untargeted OIR metabolomics, vitreous- and retina-targeted OIR metabolomics and blood-targeted metabolomics of ROP, indicating that arginine biosynthesis might be the common pathway of ROP and neonatal kidney injury.
Collapse
Affiliation(s)
- Yuhang Yang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, Guangdong, China
- Jinan University, Guangzhou, Guangdong, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, Guangdong, China
| | - Hui Qi
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, Guangdong, China
| | - Yinsheng Zhang
- School of Management and E-Business, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yulin Zhang
- Jinan University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jie Sun
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, Guangdong, China
- Jinan University, Guangzhou, Guangdong, China
| | - Xiaoyan Chai
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, Guangdong, China
- Jinan University, Guangzhou, Guangdong, China
| | - Xiaofeng Lu
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, Guangdong, China
| | - Zixin Fan
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, Guangdong, China
| | - Dongting Wu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Jinan University, Guangzhou, Guangdong, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, Guangdong, China
- Jinan University, Guangzhou, Guangdong, China
| | - Hetian Lei
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Chondrozoumakis G, Chatzimichail E, Habra O, Vounotrypidis E, Papanas N, Gatzioufas Z, Panos GD. Retinal Biomarkers in Diabetic Retinopathy: From Early Detection to Personalized Treatment. J Clin Med 2025; 14:1343. [PMID: 40004872 PMCID: PMC11856754 DOI: 10.3390/jcm14041343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of vision loss globally, with early detection and intervention critical to preventing severe outcomes. This narrative review examines the role of retinal biomarkers-molecular and imaging-in improving early diagnosis, tracking disease progression, and advancing personalized treatment for DR. Key biomarkers, such as inflammatory and metabolic markers, imaging findings from optical coherence tomography and fluorescence angiography and genetic markers, provide insights into disease mechanisms, help predict progression, and monitor responses to treatments, like anti-VEGF and corticosteroids. While challenges in standardization and clinical integration remain, these biomarkers hold promise for a precision medicine approach that could transform DR management through early, individualized care.
Collapse
Affiliation(s)
| | | | - Oussama Habra
- Department of Ophthalmology, University Hospital of Basel, 4031 Basel, Switzerland
| | | | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Zisis Gatzioufas
- Department of Ophthalmology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Georgios D. Panos
- First Department of Ophthalmology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Division of Ophthalmology & Visual Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
3
|
Tang Q, Buonfiglio F, Böhm EW, Zhang L, Pfeiffer N, Korb CA, Gericke A. Diabetic Retinopathy: New Treatment Approaches Targeting Redox and Immune Mechanisms. Antioxidants (Basel) 2024; 13:594. [PMID: 38790699 PMCID: PMC11117924 DOI: 10.3390/antiox13050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, characterized by irreversible visual impairment resulting from microvascular abnormalities. Since the global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research interest. The development and progression of DR encompass a complex interplay of pathological and physiological mechanisms, such as high glucose-induced oxidative stress, immune responses, vascular endothelial dysfunction, as well as damage to retinal neurons. Recent years have unveiled the involvement of genomic and epigenetic factors in the formation of DR mechanisms. At present, extensive research explores the potential of biomarkers such as cytokines, molecular and cell therapies, antioxidant interventions, and gene therapy for DR treatment. Notably, certain drugs, such as anti-VEGF agents, antioxidants, inhibitors of inflammatory responses, and protein kinase C (PKC)-β inhibitors, have demonstrated promising outcomes in clinical trials. Within this context, this review article aims to introduce the recent molecular research on DR and highlight the current progress in the field, with a particular focus on the emerging and experimental treatment strategies targeting the immune and redox signaling pathways.
Collapse
Affiliation(s)
- Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| | | | | | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| |
Collapse
|
4
|
Abu El-Asrar AM, Nawaz MI, Ahmad A, Dillemans L, Siddiquei M, Allegaert E, Gikandi PW, De Hertogh G, Opdenakker G, Struyf S. CD40 Ligand-CD40 Interaction Is an Intermediary between Inflammation and Angiogenesis in Proliferative Diabetic Retinopathy. Int J Mol Sci 2023; 24:15582. [PMID: 37958563 PMCID: PMC10648257 DOI: 10.3390/ijms242115582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
We aimed to investigate the role of the CD40-CD40 ligand (CD40L) pathway in inflammation-mediated angiogenesis in proliferative diabetic retinopathy (PDR). We analyzed vitreous fluids and epiretinal fibrovascular membranes from PDR and nondiabetic patients, cultures of human retinal microvascular endothelial cells (HRMECs) and Müller glial cells and rat retinas with ELISA, immunohistochemistry, flow cytometry and Western blot analysis. Functional tests included measurement of blood-retinal barrier breakdown, in vitro angiogenesis and assessment of monocyte-HRMEC adherence. CD40L and CD40 levels were significantly increased in PDR vitreous samples. We demonstrated CD40L and CD40 expression in vascular endothelial cells, leukocytes and myofibroblasts in epiretinal membranes. Intravitreal administration of soluble (s)CD40L in normal rats significantly increased retinal vascular permeability and induced significant upregulation of phospho-ERK1/2, VEGF, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). sCD40L induced upregulation of VEGF, MMP-9, MCP-1 and HMGB1 in cultured Müller cells and phospo-ERK1/2, p65 subunit of NF-ĸB, VCAM-1 and VEGF in cultured HRMECS. TNF-α induced significant upregulation of CD40 in HRMECs and Müller cells and VEGF induced significant upregulation of CD40 in HRMECs. sCD40L induced proliferation and migration of HRMECs. We provide experimental evidence supporting the involvement of the CD40L-CD40 pathway and how it regulates inflammatory angiogenesis in PDR.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Mohd I. Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.D.); (S.S.)
| | - Mairaj Siddiquei
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, 3000 Leuven, Belgium; (E.A.); (G.D.H.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Priscilla W. Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, 3000 Leuven, Belgium; (E.A.); (G.D.H.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.D.); (S.S.)
| |
Collapse
|
5
|
Zuo Y, He Z, Chen Y, Dai L. Dual role of ANGPTL4 in inflammation. Inflamm Res 2023:10.1007/s00011-023-01753-9. [PMID: 37300585 DOI: 10.1007/s00011-023-01753-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Angiopoietin-like 4 (ANGPTL4) belongs to the angiopoietin-like protein family and mediates the inhibition of lipoprotein lipase activity. Emerging evidence suggests that ANGPTL4 has pleiotropic functions with anti- and pro-inflammatory properties. METHODS A thorough search on PubMed related to ANGPTL4 and inflammation was performed. RESULTS Genetic inactivation of ANGPTL4 can significantly reduce the risk of developing coronary artery disease and diabetes. However, antibodies against ANGPTL4 result in several undesirable effects in mice or monkeys, such as lymphadenopathy and ascites. Based on the research progress on ANGPTL4, we systematically discussed the dual role of ANGPTL4 in inflammation and inflammatory diseases (lung injury, pancreatitis, heart diseases, gastrointestinal diseases, skin diseases, metabolism, periodontitis, and osteolytic diseases). This may be attributed to several factors, including post-translational modification, cleavage and oligomerization, and subcellular localization. CONCLUSION Understanding the potential underlying mechanisms of ANGPTL4 in inflammation in different tissues and diseases will aid in drug discovery and treatment development.
Collapse
Affiliation(s)
- Yuyue Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yu Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Tsai T, Alwees M, Asaad MA, Theile J, Kakkassery V, Dick HB, Schultz T, Joachim SC. Increased Angiopoietin-1 and -2 levels in human vitreous are associated with proliferative diabetic retinopathy. PLoS One 2023; 18:e0280488. [PMID: 36662891 PMCID: PMC9858353 DOI: 10.1371/journal.pone.0280488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diabetic retinopathy is a frequent complication of diabetes mellitus and a leading cause of blindness in adults. The objective of this study was to elucidate the diabetic retinopathy pathophysiology in more detail by comparing protein alterations in human vitreous of different diabetic retinopathy stages. METHODS Vitreous samples were obtained from 116 patients undergoing pars plana vitrectomy. Quantitative immunoassays were performed of angiogenic factors (VEGF-A, PIGF, Angiopoietin-1, Angiopoietin-2, Galectin-1) as well as cytokines (IL-1β, IL-8, IFN-γ, TNF-α, CCL3) in samples from control patients (patients who don't suffer from diabetes; n = 58) as well as diabetes mellitus patients without retinopathy (n = 25), non-proliferative diabetic retinopathy (n = 12), and proliferative diabetic retinopathy patients (n = 21). In addition, correlation analysis of protein levels in vitreous samples and fasting glucose values of these patients as well as correlation analyses of protein levels and VEGF-A were performed. RESULTS We detected up-regulated levels of VEGF-A (p = 0.001), PIGF (p<0.001), Angiopoietin-1 (p = 0.005), Angiopoietin-2 (p<0.001), IL-1β (p = 0.012), and IL-8 (p = 0.018) in proliferative diabetic retinopathy samples. Interestingly, we found a strong positive correlation between Angiopoietin-2 and VEGF-A levels as well as a positive correlation between Angiopoietin-1 and VEGF-A. CONCLUSION This indicated that further angiogenic factors, besides VEGF, but also pro-inflammatory cytokines are involved in disease progression and development of proliferative diabetic retinopathy. In contrast, factors other than angiogenic factors seem to play a crucial role in non-proliferative diabetic retinopathy development. A detailed breakdown of the pathophysiology contributes to future detection and treatment of the disease.
Collapse
Affiliation(s)
- Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Mohannad Alwees
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Mohammad Ali Asaad
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Janine Theile
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Vinodh Kakkassery
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Ophthalmology, University of Luebeck, Luebeck, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Tim Schultz
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
7
|
The integrated transcriptome bioinformatics analysis identifies key genes and cellular components for proliferative diabetic retinopathy. PLoS One 2022; 17:e0277952. [PMID: 36409751 PMCID: PMC9678275 DOI: 10.1371/journal.pone.0277952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Proliferative Diabetic Retinopathy (PDR) is a chronic complication of Diabetes and the main cause of blindness among the world's working population at present. While there have been many studies on the pathogenesis of PDR, its intrinsic molecular mechanisms have not yet been fully elucidated. In recent years, several studies have employed bulk RNA-sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) to profile differentially expressed genes (DEGs) and cellular components associated with PDR. This study adds to this expanding body of work by identifying PDR's target genes and cellular components by conducting an integrated transcriptome bioinformatics analysis. This study integrately examined two public bulk RNA-seq datasets(including 11 PDR patients and 7 controls) and one single-cell RNA-seq datasets(including 5 PDR patients) of Fibro (Vascular) Membranes (FVMs) from PDR patients and control. A total of 176 genes were identified as DEGs between PDR patients and control among both bulk RNA-seq datasets. Based on these DEGs, 14 proteins were identified in the protein overlap within the significant ligand-receptor interactions of retinal FVMs and Protein-Protein Interaction (PPI) network, three of which were associated with PDR (CD44, ICAM1, POSTN), and POSTN might act as key ligand. This finding may provide novel gene signatures and therapeutic targets for PDR.
Collapse
|
8
|
Differential Expression and Localization of ADAMTS Proteinases in Proliferative Diabetic Retinopathy. Molecules 2022; 27:molecules27185977. [PMID: 36144730 PMCID: PMC9506249 DOI: 10.3390/molecules27185977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
We analyzed the expression of ADAMTS proteinases ADAMTS-1, -2, -4, -5 and -13; their activating enzyme MMP-15; and the degradation products of proteoglycan substrates versican and biglycan in an ocular microenvironment of proliferative diabetic retinopathy (PDR) patients. Vitreous samples from PDR and nondiabetic patients, epiretinal fibrovascular membranes from PDR patients, rat retinas, retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied. The levels of ADAMTS proteinases and MMP-15 were increased in the vitreous from PDR patients. Both full-length and cleaved activation/degradation fragments of ADAMTS proteinases were identified. The amounts of versican and biglycan cleavage products were increased in vitreous from PDR patients. ADAMTS proteinases and MMP-15 were localized in endothelial cells, monocytes/macrophages and myofibroblasts in PDR membranes, and ADAMTS-4 was expressed in the highest number of stromal cells. The angiogenic activity of PDR membranes correlated significantly with levels of ADAMTS-1 and -4 cellular expression. ADAMTS proteinases and MMP-15 were expressed in rat retinas. ADAMTS-1 and -5 and MMP-15 levels were increased in diabetic rat retinas. HRMECs and Müller cells constitutively expressed ADAMTS proteinases but not MMP-15. The inhibition of NF-κB significantly attenuated the TNF-α-and-VEGF-induced upregulation of ADAMTS-1 and -4 in a culture medium of HRMECs and Müller cells. In conclusion, ADAMTS proteinases, MMP-15 and versican and biglycan cleavage products were increased in the ocular microenvironment of patients with PDR.
Collapse
|
9
|
Lazzara F, Longo AM, Giurdanella G, Lupo G, Platania CBM, Rossi S, Drago F, Anfuso CD, Bucolo C. Vitamin D3 preserves blood retinal barrier integrity in an in vitro model of diabetic retinopathy. Front Pharmacol 2022; 13:971164. [PMID: 36091806 PMCID: PMC9458952 DOI: 10.3389/fphar.2022.971164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
The impairment of the blood retinal barrier (BRB) represents one of the main features of diabetic retinopathy, a secondary microvascular complication of diabetes. Hyperglycemia is a triggering factor of vascular cells damage in diabetic retinopathy. The aim of this study was to assess the effects of vitamin D3 on BRB protection, and to investigate its regulatory role on inflammatory pathways. We challenged human retinal endothelial cells with high glucose (HG) levels. We found that vitamin D3 attenuates cell damage elicited by HG, maintaining cell viability and reducing the expression of inflammatory cytokines such as IL-1β and ICAM-1. Furthermore, we showed that vitamin D3 preserved the BRB integrity as demonstrated by trans-endothelial electrical resistance, permeability assay, and cell junction morphology and quantification (ZO-1 and VE-cadherin). In conclusion this in vitro study provided new insights on the retinal protective role of vitamin D3, particularly as regard as the early phase of diabetic retinopathy, characterized by BRB breakdown and inflammation.
Collapse
Affiliation(s)
- Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Anna Maria Longo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Giurdanella
- Faculty of Medicine and Surgery, University of Enna “Kore”, Enna, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
- *Correspondence: Claudio Bucolo,
| |
Collapse
|
10
|
Wang Q, Cai H, Xu D, Cui L, Zhang Y, Chen M. Pars plana vitrectomy assisted by intravitreal injection of conbercept enhances the therapeutic effect and quality of life in patients with severe proliferative diabetic retinopathy. Am J Transl Res 2022; 14:1324-1331. [PMID: 35273734 PMCID: PMC8902581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the application value of intravitreal injection of Conbercept (IVC)-assisted pars plana vitrectomy (PPV) in patients with severe proliferative diabetic retinopathy (PDR). METHODS Forty-eight patients with severe PDR who underwent surgical treatment in Chongqing Aier Eye Hospital between October 2019 and June 2021 were retrospectively enrolled, and their clinical data were analyzed. Of them, 22 patients receiving PPV alone were assigned to the PPV group, and the remaining 26 patients treated with IVC-assisted PPV were included in the PPV+IVC group. The intra-operative indicators, postoperative complication rate, visual acuity (VA) improvement, and postoperative quality of life (QoL) were compared between the two groups. The levels of vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and basic fibroblast growth factor (bFGF) in aqueous humor (AH) as well as serum contents of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were determined by Enzyme Linked Immunosorbent Assay (ELISA). RESULTS Compared to the PPV group, the operation time of the PPV+IVC group was significantly shorter, and the incidence of severe intraoperative blood loss (IBL), bipolar electrocoagulation hemostasis, iatrogenic retinal breaks (IRBs), postoperative silicone oil tamponade (SOT), and overall complications were significantly reduced. After surgery, the central macular thickness (CMT) was lower and the best corrected visual acuity (BCVA) assessed by the standard visual acuity chart and VA were significantly more improved in the PPV+IVC group versus the PPV group. After the use of Conbercept, the AH levels of VEGF, PIGF, and bFGF in the PPV+IVC group decreased and were significantly lower than those in the PPV group. The PPV+IVC group also showed lower serum levels of TNF-α, IL-6, and IL-1β than the PPV group. CONCLUSIONS IVC-assisted PPV can effectively reduce the difficulty of surgical treatment for PDR, better improve the postoperative VA of patients, and reduce inflammation with fewer complications.
Collapse
Affiliation(s)
- Qin Wang
- Chongqing Aier Eye HospitalChongqing 400020, Chongqing, China
| | - Hui Cai
- Department of Oncology, Fengdu People’s Hospital of ChongqingChongqing 408020, China
| | - Dahua Xu
- College of Eye Sciences, Central South UniversityChangsha 410015, Hunan, China
| | - Lin Cui
- Chongqing Aier Eye HospitalChongqing 400020, Chongqing, China
| | - Yan Zhang
- Department of Ophthalmology, Dazhou Central HospitalDazhou 635000, Sichuan, China
| | - Mei Chen
- Chongqing Aier Eye HospitalChongqing 400020, Chongqing, China
| |
Collapse
|
11
|
Abu El-Asrar AM, Ahmad A, Nawaz MI, Siddiquei MM, De Zutter A, Vanbrabant L, Gikandi PW, Opdenakker G, Struyf S. Tissue Inhibitor of Metalloproteinase-3 Ameliorates Diabetes-Induced Retinal Inflammation. Front Physiol 2022; 12:807747. [PMID: 35082694 PMCID: PMC8784736 DOI: 10.3389/fphys.2021.807747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose: Endogenous tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) has powerful regulatory effects on inflammation and angiogenesis. In this study, we investigated the role of TIMP-3 in regulating inflammation in the diabetic retina. Methods: Vitreous samples from patients with proliferative diabetic retinopathy (PDR) and non-diabetic patients were subjected to Western blot analysis. Streptozotocin-treated rats were used as a preclinical diabetic retinopathy (DR) model. Blood-retinal barrier (BRB) breakdown was assessed with fluorescein isothiocyanate (FITC)-conjugated dextran. Rat retinas, human retinal microvascular endothelial cells (HRMECs) and human retinal Müller glial cells were studied by Western blot analysis and ELISA. Adherence of human monocytes to HRMECs was assessed and in vitro angiogenesis assays were performed. Results: Tissue inhibitor of matrix metalloproteinase-3 in vitreous samples was largely glycosylated. Intravitreal injection of TIMP-3 attenuated diabetes-induced BRB breakdown. This effect was associated with downregulation of diabetes-induced upregulation of the p65 subunit of NF-κB, intercellular adhesion molecule-1 (ICAM-1), and vascular endothelial growth factor (VEGF), whereas phospho-ERK1/2 levels were not altered. In Müller cell cultures, TIMP-3 significantly attenuated VEGF upregulation induced by high-glucose (HG), the hypoxia mimetic agent cobalt chloride (CoCl2) and TNF-α and attenuated MCP-1 upregulation induced by CoCl2 and TNF-α, but not by HG. TIMP-3 attenuated HG-induced upregulation of phospho-ERK1/2, caspase-3 and the mature form of ADAM17, but not the levels of the p65 subunit of NF-κB and the proform of ADAM17 in Müller cells. TIMP-3 significantly downregulated TNF-α-induced upregulation of ICAM-1 and VCAM-1 in HRMECs. Accordingly, TIMP-3 significantly decreased spontaneous and TNF-α- and VEGF-induced adherence of monocytes to HRMECs. Finally, TIMP-3 significantly attenuated VEGF-induced migration, chemotaxis and proliferation of HRMECs. Conclusion:In vitro and in vivo data point to anti-inflammatory and anti-angiogenic effects of TIMP-3 and support further studies for its applications in the treatment of DR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Priscilla W Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ghislain Opdenakker
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, and University Hospitals UZ Gasthuisberg, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Yuan TH, Yue ZS, Zhang GH, Wang L, Dou GR. Beyond the Liver: Liver-Eye Communication in Clinical and Experimental Aspects. Front Mol Biosci 2022; 8:823277. [PMID: 35004861 PMCID: PMC8740136 DOI: 10.3389/fmolb.2021.823277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
The communication between organs participates in the regulation of body homeostasis under physiological conditions and the progression and adaptation of diseases under pathological conditions. The communication between the liver and the eyes has been received more and more attention. In this review, we summarized some molecular mediators that can reflect the relationship between the liver and the eye, and then extended the metabolic relationship between the liver and the eye. We also summarized some typical diseases and phenotypes that have been able to reflect the liver-eye connection in the clinic, especially non-alcoholic fatty liver disease (NAFLD) and diabetic retinopathy (DR). The close connection between the liver and the eye is reflected through multiple pathways such as metabolism, oxidative stress, and inflammation. In addition, we presented the connection between the liver and the eye in traditional Chinese medicine, and introduced the fact that artificial intelligence may use the close connection between the liver and the eye to help us solve some practical clinical problems. Paying attention to liver-eye communication will help us have a deeper and more comprehensive understanding of certain communication between liver diseases and eyes, and provide new ideas for their potential therapeutic strategy.
Collapse
Affiliation(s)
- Tian-Hao Yuan
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of The Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhen-Sheng Yue
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Heng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Xie Z, Xiao X. Novel biomarkers and therapeutic approaches for diabetic retinopathy and nephropathy: Recent progress and future perspectives. Front Endocrinol (Lausanne) 2022; 13:1065856. [PMID: 36506068 PMCID: PMC9732104 DOI: 10.3389/fendo.2022.1065856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
The global burden due to microvascular complications in patients with diabetes mellitus persists and even increases alarmingly, the intervention and management are now encountering many difficulties and challenges. This paper reviews the recent advancement and progress in novel biomarkers, artificial intelligence technology, therapeutic agents and approaches of diabetic retinopathy and nephropathy, providing more insights into the management of microvascular complications.
Collapse
|
14
|
Xu Q, Gong C, Qiao L, Feng R, Liu H, Liu Y, Ji S, Zhang Y, Wu S, Li S. Aqueous Level of ANGPTL4 Correlates with the OCTA Metrics of Diabetic Macular Edema in NPDR. J Diabetes Res 2022; 2022:8435603. [PMID: 35097131 PMCID: PMC8791715 DOI: 10.1155/2022/8435603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/09/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To investigate the aqueous levels of angiogenic factors in nonproliferative diabetic retinopathy (NPDR) patients with diabetic macular edema (DME) and to ascertain their association with optical coherence tomography angiography (OCTA) metrics. METHODS This study enrolled 21 NPDR eyes with DME (NPDR/DME+), 17 NPDR eyes without DME (NPDR/DME-), and 16 diabetic eyes without retinopathy (DWR). Luminex bead-based multiplex array was used to measure the levels of 25 cytokines. OCTA system with a scan area of 3 × 3 mm was used to measure retinal thickness (RT), retinal volume (RV), superficial vessel density (SVD), deep vessel density (DVD), foveal avascular zone (FAZ) area, perimeter and acircularity index. RESULTS The levels of ANGPTL4 were significantly different among the three groups (P < 0.05), in which NPDR/DME+ group had the highest level and NPDR/DME- group had a higher level than the DWR group (all, P < 0.0167). OCTA examination showed that, compared with DWR and NPDR/DME- group, RT and RV increased and the whole/parafoveal DVD decreased in NPDR/DME+ group (all, P < 0.05). Meanwhile, NPDR/DME- group had lower parafoveal DVD than the DWR group (P < 0.05). Correlation analysis showed that the levels of ANGPTL4 were positively correlated with foveal/parafoveal RT and RV and negatively correlated with whole/parafoveal DVD in NPDR patients (all, P < 0.05). As the influencing factor of RT, RV, and DVD, every additional 103 pg/ml of ANGPTL4 was associated with an increase in foveal and parafoveal RT of 4.299 μm and 3.598 μm, respectively. Every additional 106 pg/ml of ANGPTL4 was associated with an increase in foveal and parafoveal RV of 3.371 mm3 and 17.705 mm3, respectively. Every additional 104 pg/ml of ANGPTL4 was associated with a decrease in whole and parafoveal DVD of 1.705% and 1.799%, respectively. CONCLUSIONS The level of ANGPTL4 in aqueous humor of NPDR patients with DME was significantly increased and ANGPTL4 might predict RT, RV, and parafoveal DVD of DME in NPDR patients.
Collapse
Affiliation(s)
- Qing Xu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| | - Chaoju Gong
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| | - Lei Qiao
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| | - Ruifang Feng
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| | - Haiyang Liu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| | - Yalu Liu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| | - Sujuan Ji
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| | - Yipeng Zhang
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| | - Shuang Wu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| | - Suyan Li
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou Eye Disease Prevention and Treatment Institute, Xuzhou, 221116 Jiangsu Province, China
| |
Collapse
|